数据驱动、地面无真值调整的自适应蒙特卡罗定位方法在城市场景

J. Giovagnola, D. Rigamonti, M. Corno, Weidong Chen, S. Savaresi
{"title":"数据驱动、地面无真值调整的自适应蒙特卡罗定位方法在城市场景","authors":"J. Giovagnola, D. Rigamonti, M. Corno, Weidong Chen, S. Savaresi","doi":"10.23919/ecc54610.2021.9654908","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a tuning method for Adaptive Monte Carlo Localization (AMCL). The proposed method tunes the most important AMCL parameters without the need of a continuous ground truth by optimizing the estimated path smoothness and using the passage through a finite number of gateways as constraints. The optimization algorithm exploits Bayesian Optimization in order to limit the number of tuning runs.Data collected with an instrumented robot on a public road validate the approach. The proposed tuning yields a robust localization with minimal manual intervention in the tuning.","PeriodicalId":105499,"journal":{"name":"2021 European Control Conference (ECC)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data-Driven, Ground Truth-Free Tuning of an Adaptive Monte Carlo Localization Method for Urban Scenarios\",\"authors\":\"J. Giovagnola, D. Rigamonti, M. Corno, Weidong Chen, S. Savaresi\",\"doi\":\"10.23919/ecc54610.2021.9654908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a tuning method for Adaptive Monte Carlo Localization (AMCL). The proposed method tunes the most important AMCL parameters without the need of a continuous ground truth by optimizing the estimated path smoothness and using the passage through a finite number of gateways as constraints. The optimization algorithm exploits Bayesian Optimization in order to limit the number of tuning runs.Data collected with an instrumented robot on a public road validate the approach. The proposed tuning yields a robust localization with minimal manual intervention in the tuning.\",\"PeriodicalId\":105499,\"journal\":{\"name\":\"2021 European Control Conference (ECC)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ecc54610.2021.9654908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ecc54610.2021.9654908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种自适应蒙特卡罗定位(AMCL)的调谐方法。该方法通过优化估计的路径平滑度和使用有限数量的网关作为约束,在不需要连续的地面真值的情况下对最重要的AMCL参数进行调谐。优化算法利用贝叶斯优化来限制调优运行的次数。在公共道路上用仪表机器人收集的数据验证了这种方法。所建议的调优产生了一个健壮的本地化,在调优过程中需要最少的人工干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven, Ground Truth-Free Tuning of an Adaptive Monte Carlo Localization Method for Urban Scenarios
In this paper, we propose a tuning method for Adaptive Monte Carlo Localization (AMCL). The proposed method tunes the most important AMCL parameters without the need of a continuous ground truth by optimizing the estimated path smoothness and using the passage through a finite number of gateways as constraints. The optimization algorithm exploits Bayesian Optimization in order to limit the number of tuning runs.Data collected with an instrumented robot on a public road validate the approach. The proposed tuning yields a robust localization with minimal manual intervention in the tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信