未压缩和压缩图像隐写分析的新算法

Ho Thi Huong Thom, Ho Van Canh, T. N. Tien
{"title":"未压缩和压缩图像隐写分析的新算法","authors":"Ho Thi Huong Thom, Ho Van Canh, T. N. Tien","doi":"10.1109/KSE.2009.21","DOIUrl":null,"url":null,"abstract":"A large number of commercial steganographic programs use the Least Significant Bit (LSB) embedding as the method of choice for message hiding in 24-bit, 8-bit color images and grayscale images or non-zero DCT coefficients (compressed images-JPEG images) and DWT coefficients of high subbands (compressed images – JPEG2000 images). It is commonly believed that changes to the LSBs of colors (or DCT coefficients) cannot be detected due to noise that is always present in digital images. In this paper, we introduce two novel methods of steganalysis that can detect LSB embedding reliably in both spatial domain and frequency domain. Methods of statistical estimation and statistical hypothesis test are applied for our problem","PeriodicalId":347175,"journal":{"name":"2009 International Conference on Knowledge and Systems Engineering","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Algorithms to Steganalysis of Uncompressed and Compressed Images\",\"authors\":\"Ho Thi Huong Thom, Ho Van Canh, T. N. Tien\",\"doi\":\"10.1109/KSE.2009.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large number of commercial steganographic programs use the Least Significant Bit (LSB) embedding as the method of choice for message hiding in 24-bit, 8-bit color images and grayscale images or non-zero DCT coefficients (compressed images-JPEG images) and DWT coefficients of high subbands (compressed images – JPEG2000 images). It is commonly believed that changes to the LSBs of colors (or DCT coefficients) cannot be detected due to noise that is always present in digital images. In this paper, we introduce two novel methods of steganalysis that can detect LSB embedding reliably in both spatial domain and frequency domain. Methods of statistical estimation and statistical hypothesis test are applied for our problem\",\"PeriodicalId\":347175,\"journal\":{\"name\":\"2009 International Conference on Knowledge and Systems Engineering\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Knowledge and Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE.2009.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2009.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大量的商业隐写程序在24位、8位彩色图像和灰度图像或非零DCT系数(压缩图像- jpeg图像)和高子带DWT系数(压缩图像- JPEG2000图像)中使用最低有效位(LSB)嵌入作为信息隐藏的选择方法。人们普遍认为,由于数字图像中始终存在的噪声,无法检测到颜色的lsb(或DCT系数)的变化。本文介绍了两种新的隐写分析方法,可以在空间域和频率域可靠地检测到LSB嵌入。本文采用统计估计和统计假设检验的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Algorithms to Steganalysis of Uncompressed and Compressed Images
A large number of commercial steganographic programs use the Least Significant Bit (LSB) embedding as the method of choice for message hiding in 24-bit, 8-bit color images and grayscale images or non-zero DCT coefficients (compressed images-JPEG images) and DWT coefficients of high subbands (compressed images – JPEG2000 images). It is commonly believed that changes to the LSBs of colors (or DCT coefficients) cannot be detected due to noise that is always present in digital images. In this paper, we introduce two novel methods of steganalysis that can detect LSB embedding reliably in both spatial domain and frequency domain. Methods of statistical estimation and statistical hypothesis test are applied for our problem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信