高光谱降维方法的对比分析

Ali Ömer Kozal, Mustafa Teke, H. Ilgin
{"title":"高光谱降维方法的对比分析","authors":"Ali Ömer Kozal, Mustafa Teke, H. Ilgin","doi":"10.1109/SIU.2013.6531487","DOIUrl":null,"url":null,"abstract":"Hyperspectral sensors generate images in narrow bands in continuous manner with hundreds of spectral bands. The data with large number of bands require more processing power to classify. To decrease the redundancy in hyperspectral images and increase classifying efficiency with less number of bands, dimension reduction techniques are applied. In this paper, linear and non-linear dimension reduction methods are compared in classification performance and calculation time.","PeriodicalId":168462,"journal":{"name":"2013 21st Signal Processing and Communications Applications Conference (SIU)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparative analysis of hyperspectral dimension reduction methods\",\"authors\":\"Ali Ömer Kozal, Mustafa Teke, H. Ilgin\",\"doi\":\"10.1109/SIU.2013.6531487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral sensors generate images in narrow bands in continuous manner with hundreds of spectral bands. The data with large number of bands require more processing power to classify. To decrease the redundancy in hyperspectral images and increase classifying efficiency with less number of bands, dimension reduction techniques are applied. In this paper, linear and non-linear dimension reduction methods are compared in classification performance and calculation time.\",\"PeriodicalId\":168462,\"journal\":{\"name\":\"2013 21st Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2013.6531487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2013.6531487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

高光谱传感器以窄波段连续的方式生成数百个光谱带的图像。频带数量多的数据对分类的处理能力要求更高。为了减少高光谱图像的冗余度,以较少的频带数提高分类效率,采用了降维技术。本文比较了线性和非线性降维方法的分类性能和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of hyperspectral dimension reduction methods
Hyperspectral sensors generate images in narrow bands in continuous manner with hundreds of spectral bands. The data with large number of bands require more processing power to classify. To decrease the redundancy in hyperspectral images and increase classifying efficiency with less number of bands, dimension reduction techniques are applied. In this paper, linear and non-linear dimension reduction methods are compared in classification performance and calculation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信