粘附性优于邻接性:使用CAD计算黎曼索引

James C. Beaumont, R. Bradford, J. Davenport, Nalina Phisanbut
{"title":"粘附性优于邻接性:使用CAD计算黎曼索引","authors":"James C. Beaumont, R. Bradford, J. Davenport, Nalina Phisanbut","doi":"10.1145/1073884.1073892","DOIUrl":null,"url":null,"abstract":"Given an elementary function with algebraic branch cuts, we show how to decide which sheet of the associated Riemann surface we are on at any given point. We do this by establishing a correspondence between the Cylindrical Algebraic Decomposition (CAD) of the complex plane defined by the branch cuts and a finite subset of sheets of the Riemann surface. The key advantage is that we no longer have to deal with the difficult 'constant problem'.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Adherence is better than adjacency: computing the Riemann index using CAD\",\"authors\":\"James C. Beaumont, R. Bradford, J. Davenport, Nalina Phisanbut\",\"doi\":\"10.1145/1073884.1073892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an elementary function with algebraic branch cuts, we show how to decide which sheet of the associated Riemann surface we are on at any given point. We do this by establishing a correspondence between the Cylindrical Algebraic Decomposition (CAD) of the complex plane defined by the branch cuts and a finite subset of sheets of the Riemann surface. The key advantage is that we no longer have to deal with the difficult 'constant problem'.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

给定一个具有代数分支切割的初等函数,我们展示了如何决定我们在任何给定点上的相关黎曼曲面的哪一张。我们通过建立由分支切割定义的复平面的柱面代数分解(CAD)与黎曼曲面的有限片子集之间的对应关系来做到这一点。关键的优点是我们不再需要处理困难的“恒定问题”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adherence is better than adjacency: computing the Riemann index using CAD
Given an elementary function with algebraic branch cuts, we show how to decide which sheet of the associated Riemann surface we are on at any given point. We do this by establishing a correspondence between the Cylindrical Algebraic Decomposition (CAD) of the complex plane defined by the branch cuts and a finite subset of sheets of the Riemann surface. The key advantage is that we no longer have to deal with the difficult 'constant problem'.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信