应变速率对304不锈钢桶1m穿刺滴度应变失效评估的影响

H. Kim, Jun-Min Seo, Ji-Hye Kim, Yun‐Jae Kim
{"title":"应变速率对304不锈钢桶1m穿刺滴度应变失效评估的影响","authors":"H. Kim, Jun-Min Seo, Ji-Hye Kim, Yun‐Jae Kim","doi":"10.1115/pvp2022-83765","DOIUrl":null,"url":null,"abstract":"\n In this paper, a strain-based failure assessment is performed on a canister made of stainless steel when a spent nuclear fuel dry storage system goes through a drop accident, to investigate the effects of strain rate on strain-based failure assessment results. The KORAD-21 multi-purpose dry storage container system developed for interim storage and transportation at the Korea Radioactive Waste Agency (KORAD) is considered. A finite element (FE) analysis is performed on a 1m puncture drop of the KORAD-21 model. Based on the FE results, the canister under a 1m puncture drop is evaluated by two different criteria: (1) strain-based acceptance criteria suggested in ASME Boiler and Pressure Vessels Code Section III, Appendix FF, “Strain-based acceptance criteria for energy-limited events” and (2) the Johnson-Cook fracture strain model based on experimental data. The difference between the two criteria is that the Johnson-Cook fracture strain model expresses the true fracture strain as a function of stress triaxiality and strain rate, whereas the formula in App. FF establishes strain limit (combination of uniform strain and true fracture strain) as a function of stress triaxiality only. In this study, the safety margins of Appendix FF are analyzed by comparing the failure assessment results for canister drop simulation with those applying the Johnson-Cook fracture strain model.","PeriodicalId":434862,"journal":{"name":"Volume 4B: Materials and Fabrication","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Strain Rate on Strain-Based Failure Assessment of Cask 1m-Puncture Drop for 304 Stainless Steel\",\"authors\":\"H. Kim, Jun-Min Seo, Ji-Hye Kim, Yun‐Jae Kim\",\"doi\":\"10.1115/pvp2022-83765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, a strain-based failure assessment is performed on a canister made of stainless steel when a spent nuclear fuel dry storage system goes through a drop accident, to investigate the effects of strain rate on strain-based failure assessment results. The KORAD-21 multi-purpose dry storage container system developed for interim storage and transportation at the Korea Radioactive Waste Agency (KORAD) is considered. A finite element (FE) analysis is performed on a 1m puncture drop of the KORAD-21 model. Based on the FE results, the canister under a 1m puncture drop is evaluated by two different criteria: (1) strain-based acceptance criteria suggested in ASME Boiler and Pressure Vessels Code Section III, Appendix FF, “Strain-based acceptance criteria for energy-limited events” and (2) the Johnson-Cook fracture strain model based on experimental data. The difference between the two criteria is that the Johnson-Cook fracture strain model expresses the true fracture strain as a function of stress triaxiality and strain rate, whereas the formula in App. FF establishes strain limit (combination of uniform strain and true fracture strain) as a function of stress triaxiality only. In this study, the safety margins of Appendix FF are analyzed by comparing the failure assessment results for canister drop simulation with those applying the Johnson-Cook fracture strain model.\",\"PeriodicalId\":434862,\"journal\":{\"name\":\"Volume 4B: Materials and Fabrication\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4B: Materials and Fabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2022-83765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4B: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2022-83765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对乏燃料干贮存系统发生跌落事故时的不锈钢罐进行了应变失效评估,研究应变率对应变失效评估结果的影响。目前正在讨论在韩国放射性废物管理院(KORAD)开发的用于临时贮存和运输的“KORAD-21”多功能干贮存容器系统。对KORAD-21模型进行了1m穿刺液滴的有限元分析。基于有限元结果,采用两种不同的准则对1m破漏下的罐进行评估:(1)ASME锅炉和压力容器规范第III节附录FF“基于应变的能量限制事件验收准则”中提出的基于应变的验收准则和(2)基于实验数据的Johnson-Cook断裂应变模型。两种准则的区别在于,Johnson-Cook断裂应变模型将断裂真应变表示为应力三轴性和应变率的函数,而App. FF中的公式将应变极限(均匀应变和断裂真应变的组合)仅表示为应力三轴性的函数。在本研究中,通过将罐落模拟的失效评估结果与Johnson-Cook断裂应变模型的失效评估结果进行对比,分析附录FF的安全裕度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Strain Rate on Strain-Based Failure Assessment of Cask 1m-Puncture Drop for 304 Stainless Steel
In this paper, a strain-based failure assessment is performed on a canister made of stainless steel when a spent nuclear fuel dry storage system goes through a drop accident, to investigate the effects of strain rate on strain-based failure assessment results. The KORAD-21 multi-purpose dry storage container system developed for interim storage and transportation at the Korea Radioactive Waste Agency (KORAD) is considered. A finite element (FE) analysis is performed on a 1m puncture drop of the KORAD-21 model. Based on the FE results, the canister under a 1m puncture drop is evaluated by two different criteria: (1) strain-based acceptance criteria suggested in ASME Boiler and Pressure Vessels Code Section III, Appendix FF, “Strain-based acceptance criteria for energy-limited events” and (2) the Johnson-Cook fracture strain model based on experimental data. The difference between the two criteria is that the Johnson-Cook fracture strain model expresses the true fracture strain as a function of stress triaxiality and strain rate, whereas the formula in App. FF establishes strain limit (combination of uniform strain and true fracture strain) as a function of stress triaxiality only. In this study, the safety margins of Appendix FF are analyzed by comparing the failure assessment results for canister drop simulation with those applying the Johnson-Cook fracture strain model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信