旋转机械轴承故障分类的机器学习技术比较分析

Anischal Kumar, V. Groza, K. K. Raj, M. Assaf, S. kumar, Rahul Kumar
{"title":"旋转机械轴承故障分类的机器学习技术比较分析","authors":"Anischal Kumar, V. Groza, K. K. Raj, M. Assaf, S. kumar, Rahul Kumar","doi":"10.1109/SACI58269.2023.10158554","DOIUrl":null,"url":null,"abstract":"This paper provides a comprehensive analysis of techniques used for bearing fault classification, which is essential for detecting anomalous conditions in rotating machinery. The focus is on identifying and categorizing various types of bearing faults to monitor equipment performance and prevent repairable motor breakdowns. The authors use experimental data to identify bearing faults and extract significant features from the dataset, and then apply Principal Component Analysis (PCA) and Curvilinear Component Analysis (CCA) techniques for exploratory analysis. The study compares the classification accuracy of various machine learning models, including support vector machines, k-nearest neighbors, ensemble models, and neural network models such as Multilayer feedforward neural network (ANN) and Convolutional neural network (CNN). The results of this study provides valuable insights for future research in bearing fault classification since it is the most important component in rotating machines..","PeriodicalId":339156,"journal":{"name":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Machine Learning Techniques for Bearing Fault Classification in Rotating Machinery\",\"authors\":\"Anischal Kumar, V. Groza, K. K. Raj, M. Assaf, S. kumar, Rahul Kumar\",\"doi\":\"10.1109/SACI58269.2023.10158554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a comprehensive analysis of techniques used for bearing fault classification, which is essential for detecting anomalous conditions in rotating machinery. The focus is on identifying and categorizing various types of bearing faults to monitor equipment performance and prevent repairable motor breakdowns. The authors use experimental data to identify bearing faults and extract significant features from the dataset, and then apply Principal Component Analysis (PCA) and Curvilinear Component Analysis (CCA) techniques for exploratory analysis. The study compares the classification accuracy of various machine learning models, including support vector machines, k-nearest neighbors, ensemble models, and neural network models such as Multilayer feedforward neural network (ANN) and Convolutional neural network (CNN). The results of this study provides valuable insights for future research in bearing fault classification since it is the most important component in rotating machines..\",\"PeriodicalId\":339156,\"journal\":{\"name\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI58269.2023.10158554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI58269.2023.10158554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

轴承故障分类是检测旋转机械异常状态的关键,本文对轴承故障分类技术进行了全面分析。重点是识别和分类各种类型的轴承故障,以监测设备性能和防止可修复的电机故障。利用实验数据对轴承故障进行识别,并从数据集中提取重要特征,然后应用主成分分析(PCA)和曲线成分分析(CCA)技术进行探索性分析。该研究比较了各种机器学习模型的分类精度,包括支持向量机、k近邻、集成模型和神经网络模型,如多层前馈神经网络(ANN)和卷积神经网络(CNN)。由于轴承是旋转机械中最重要的部件,本研究结果为今后的故障分类研究提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Machine Learning Techniques for Bearing Fault Classification in Rotating Machinery
This paper provides a comprehensive analysis of techniques used for bearing fault classification, which is essential for detecting anomalous conditions in rotating machinery. The focus is on identifying and categorizing various types of bearing faults to monitor equipment performance and prevent repairable motor breakdowns. The authors use experimental data to identify bearing faults and extract significant features from the dataset, and then apply Principal Component Analysis (PCA) and Curvilinear Component Analysis (CCA) techniques for exploratory analysis. The study compares the classification accuracy of various machine learning models, including support vector machines, k-nearest neighbors, ensemble models, and neural network models such as Multilayer feedforward neural network (ANN) and Convolutional neural network (CNN). The results of this study provides valuable insights for future research in bearing fault classification since it is the most important component in rotating machines..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信