简短公告:重新审视幂律度分布的社会图谱分析

A. Sala, Haitao Zheng, Ben Y. Zhao, S. Gaito, G. P. Rossi
{"title":"简短公告:重新审视幂律度分布的社会图谱分析","authors":"A. Sala, Haitao Zheng, Ben Y. Zhao, S. Gaito, G. P. Rossi","doi":"10.1145/1835698.1835791","DOIUrl":null,"url":null,"abstract":"The study of complex networks led to the belief that the connectivity of network nodes generally follows a Power-law distribution. In this work, we show that modeling large-scale online social networks using a Power-law distribution produces significant fitting errors. We propose the use of a more accurate node degree distribution model based on the Pareto-Lognormal distribution. Using large datasets gathered from Facebook, we show that the Power-law curve produces a significant over-estimation of the number of high degree nodes, leading researchers to erroneous designs for a number of social applications and systems, including shortest-path prediction, community detection, and influence maximization. We provide a formal proof of the error reduction using the Pareto-Lognormal distribution, which we envision will have strong implications on the correctness of social systems and applications.","PeriodicalId":447863,"journal":{"name":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Brief announcement: revisiting the power-law degree distribution for social graph analysis\",\"authors\":\"A. Sala, Haitao Zheng, Ben Y. Zhao, S. Gaito, G. P. Rossi\",\"doi\":\"10.1145/1835698.1835791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of complex networks led to the belief that the connectivity of network nodes generally follows a Power-law distribution. In this work, we show that modeling large-scale online social networks using a Power-law distribution produces significant fitting errors. We propose the use of a more accurate node degree distribution model based on the Pareto-Lognormal distribution. Using large datasets gathered from Facebook, we show that the Power-law curve produces a significant over-estimation of the number of high degree nodes, leading researchers to erroneous designs for a number of social applications and systems, including shortest-path prediction, community detection, and influence maximization. We provide a formal proof of the error reduction using the Pareto-Lognormal distribution, which we envision will have strong implications on the correctness of social systems and applications.\",\"PeriodicalId\":447863,\"journal\":{\"name\":\"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1835698.1835791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835698.1835791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

复杂网络的研究使人们相信网络节点的连通性通常遵循幂律分布。在这项工作中,我们表明,使用幂律分布建模大规模在线社交网络会产生显着的拟合误差。我们建议使用基于Pareto-Lognormal分布的更精确的节点度分布模型。使用从Facebook收集的大型数据集,我们表明幂律曲线对高节点的数量产生了显著的高估,导致研究人员对许多社交应用和系统的错误设计,包括最短路径预测、社区检测和影响最大化。我们使用帕累托对数正态分布提供了误差减少的正式证明,我们设想这将对社会系统和应用程序的正确性产生强烈的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brief announcement: revisiting the power-law degree distribution for social graph analysis
The study of complex networks led to the belief that the connectivity of network nodes generally follows a Power-law distribution. In this work, we show that modeling large-scale online social networks using a Power-law distribution produces significant fitting errors. We propose the use of a more accurate node degree distribution model based on the Pareto-Lognormal distribution. Using large datasets gathered from Facebook, we show that the Power-law curve produces a significant over-estimation of the number of high degree nodes, leading researchers to erroneous designs for a number of social applications and systems, including shortest-path prediction, community detection, and influence maximization. We provide a formal proof of the error reduction using the Pareto-Lognormal distribution, which we envision will have strong implications on the correctness of social systems and applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信