{"title":"SURF应用于全景图像拼接","authors":"Luo Juan, O. Gwun","doi":"10.1109/IPTA.2010.5586723","DOIUrl":null,"url":null,"abstract":"SURF (Speeded Up Robust Features) is one of the famous feature-detection algorithms. This paper proposes a panorama image stitching system which combines an image matching algorithm; modified SURF and an image blending algorithm; multi-band blending. The process is divided in the following steps: first, get feature descriptor of the image using modified SURF; secondly, find matching pairs, check the neighbors by K-NN (K-nearest neighbor), and remove the mismatch couples by RANSAC(Random Sample Consensus); then, adjust the images by bundle adjustment and estimate the accurate homography matrix; lastly, blend images by multi-band blending. Also, comparison of SIFT (Scale Invariant Feature Transform) and modified SURF are also shown as a base of selection of image matching algorithm. According to the experiments, the present system can make the stitching seam invisible and get a perfect panorama for large image data and it is faster than previous method.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"SURF applied in panorama image stitching\",\"authors\":\"Luo Juan, O. Gwun\",\"doi\":\"10.1109/IPTA.2010.5586723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SURF (Speeded Up Robust Features) is one of the famous feature-detection algorithms. This paper proposes a panorama image stitching system which combines an image matching algorithm; modified SURF and an image blending algorithm; multi-band blending. The process is divided in the following steps: first, get feature descriptor of the image using modified SURF; secondly, find matching pairs, check the neighbors by K-NN (K-nearest neighbor), and remove the mismatch couples by RANSAC(Random Sample Consensus); then, adjust the images by bundle adjustment and estimate the accurate homography matrix; lastly, blend images by multi-band blending. Also, comparison of SIFT (Scale Invariant Feature Transform) and modified SURF are also shown as a base of selection of image matching algorithm. According to the experiments, the present system can make the stitching seam invisible and get a perfect panorama for large image data and it is faster than previous method.\",\"PeriodicalId\":236574,\"journal\":{\"name\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2010.5586723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SURF (Speeded Up Robust Features) is one of the famous feature-detection algorithms. This paper proposes a panorama image stitching system which combines an image matching algorithm; modified SURF and an image blending algorithm; multi-band blending. The process is divided in the following steps: first, get feature descriptor of the image using modified SURF; secondly, find matching pairs, check the neighbors by K-NN (K-nearest neighbor), and remove the mismatch couples by RANSAC(Random Sample Consensus); then, adjust the images by bundle adjustment and estimate the accurate homography matrix; lastly, blend images by multi-band blending. Also, comparison of SIFT (Scale Invariant Feature Transform) and modified SURF are also shown as a base of selection of image matching algorithm. According to the experiments, the present system can make the stitching seam invisible and get a perfect panorama for large image data and it is faster than previous method.