个人智能手机传感器数据的多元隐马尔可夫模型:时间序列分析

William van der Kamp, N. Osgood
{"title":"个人智能手机传感器数据的多元隐马尔可夫模型:时间序列分析","authors":"William van der Kamp, N. Osgood","doi":"10.1109/ICHI.2017.84","DOIUrl":null,"url":null,"abstract":"Smartphone-based human activity recognition (HAR) offers growing value for health research. We applied offline Hidden Markov Models (HMMs) to multivariate smartphone sensor data, classifying individual behaviour into a time series of states. We used supervised HMMs, validated using ground-truth data from a small self-report study. The HMMs achieved reasonable accuracy in classifying phone off-person vs. phone on-person, off-vehicle vs. on-vehicle, and phone off-person vs. sitting vs. standing vs. walking, for some participants. Strong evidence suggests that poor accuracy in other cases was caused by participant mislabeling, though HMM shortcomings contributed.","PeriodicalId":263611,"journal":{"name":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multivariate Hidden Markov Models for Personal Smartphone Sensor Data: Time Series Analysis\",\"authors\":\"William van der Kamp, N. Osgood\",\"doi\":\"10.1109/ICHI.2017.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smartphone-based human activity recognition (HAR) offers growing value for health research. We applied offline Hidden Markov Models (HMMs) to multivariate smartphone sensor data, classifying individual behaviour into a time series of states. We used supervised HMMs, validated using ground-truth data from a small self-report study. The HMMs achieved reasonable accuracy in classifying phone off-person vs. phone on-person, off-vehicle vs. on-vehicle, and phone off-person vs. sitting vs. standing vs. walking, for some participants. Strong evidence suggests that poor accuracy in other cases was caused by participant mislabeling, though HMM shortcomings contributed.\",\"PeriodicalId\":263611,\"journal\":{\"name\":\"2017 IEEE International Conference on Healthcare Informatics (ICHI)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Healthcare Informatics (ICHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHI.2017.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI.2017.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于智能手机的人类活动识别(HAR)为健康研究提供了越来越大的价值。我们将离线隐马尔可夫模型(hmm)应用于多元智能手机传感器数据,将个体行为分类为状态的时间序列。我们使用有监督的hmm,并使用小型自我报告研究的基本事实数据进行验证。对于一些参与者来说,hmm在分类电话离人、离车、离车、离人、坐着、站着、走着方面达到了合理的准确性。强有力的证据表明,在其他情况下,准确性差是由参与者错误标记引起的,尽管HMM的缺点也有贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate Hidden Markov Models for Personal Smartphone Sensor Data: Time Series Analysis
Smartphone-based human activity recognition (HAR) offers growing value for health research. We applied offline Hidden Markov Models (HMMs) to multivariate smartphone sensor data, classifying individual behaviour into a time series of states. We used supervised HMMs, validated using ground-truth data from a small self-report study. The HMMs achieved reasonable accuracy in classifying phone off-person vs. phone on-person, off-vehicle vs. on-vehicle, and phone off-person vs. sitting vs. standing vs. walking, for some participants. Strong evidence suggests that poor accuracy in other cases was caused by participant mislabeling, though HMM shortcomings contributed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信