{"title":"多径衰落下CDMA上行链路联合顺序信道估计和多用户检测","authors":"Qinghua Li, C. Georghiades, Xiaodong Wang","doi":"10.1109/VETECF.2002.1040543","DOIUrl":null,"url":null,"abstract":"We consider joint channel estimation and data detection in uplink asynchronous CDMA systems employing aperiodic (long) spreading sequences in the presence of unknown multipath fading. Since maximum-likelihood sequence estimation is too complex to perform, multiuser receivers are proposed based on the sequential expectation-maximization (EM) algorithm. With prior knowledge of only the signature waveforms, the delays and the second-order statistics of the fading channel, the receivers sequentially estimate the channel using the sequential EM algorithm. The snapshot estimates of each path are further tracked by linear minimum-mean-squared-error (MMSE) filters and the user data are detected by a maximum-likelihood sequence detector, given the channel estimates. The proposed receivers that use the exact expressions have a computational complexity O(2/sup K/) per bit, where K is the number of users. Using the traditional EM algorithm, we derive low-complexity approximations which have a complexity of O(K/sup 2/) per bit. Simulation results demonstrate that the proposed receivers offer substantial performance gains over conventional pilot-symbol assisted techniques and achieve a performance close to the known-channel bounds. Furthermore, the proposed receivers even outperform the single-user RAKE receiver with Nyquist pilot-insertion rate in a single-user environment.","PeriodicalId":162055,"journal":{"name":"Proceedings IEEE 56th Vehicular Technology Conference","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Joint sequential channel estimation and multiuser detection for uplink CDMA over multipath fading\",\"authors\":\"Qinghua Li, C. Georghiades, Xiaodong Wang\",\"doi\":\"10.1109/VETECF.2002.1040543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider joint channel estimation and data detection in uplink asynchronous CDMA systems employing aperiodic (long) spreading sequences in the presence of unknown multipath fading. Since maximum-likelihood sequence estimation is too complex to perform, multiuser receivers are proposed based on the sequential expectation-maximization (EM) algorithm. With prior knowledge of only the signature waveforms, the delays and the second-order statistics of the fading channel, the receivers sequentially estimate the channel using the sequential EM algorithm. The snapshot estimates of each path are further tracked by linear minimum-mean-squared-error (MMSE) filters and the user data are detected by a maximum-likelihood sequence detector, given the channel estimates. The proposed receivers that use the exact expressions have a computational complexity O(2/sup K/) per bit, where K is the number of users. Using the traditional EM algorithm, we derive low-complexity approximations which have a complexity of O(K/sup 2/) per bit. Simulation results demonstrate that the proposed receivers offer substantial performance gains over conventional pilot-symbol assisted techniques and achieve a performance close to the known-channel bounds. Furthermore, the proposed receivers even outperform the single-user RAKE receiver with Nyquist pilot-insertion rate in a single-user environment.\",\"PeriodicalId\":162055,\"journal\":{\"name\":\"Proceedings IEEE 56th Vehicular Technology Conference\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE 56th Vehicular Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VETECF.2002.1040543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE 56th Vehicular Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VETECF.2002.1040543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint sequential channel estimation and multiuser detection for uplink CDMA over multipath fading
We consider joint channel estimation and data detection in uplink asynchronous CDMA systems employing aperiodic (long) spreading sequences in the presence of unknown multipath fading. Since maximum-likelihood sequence estimation is too complex to perform, multiuser receivers are proposed based on the sequential expectation-maximization (EM) algorithm. With prior knowledge of only the signature waveforms, the delays and the second-order statistics of the fading channel, the receivers sequentially estimate the channel using the sequential EM algorithm. The snapshot estimates of each path are further tracked by linear minimum-mean-squared-error (MMSE) filters and the user data are detected by a maximum-likelihood sequence detector, given the channel estimates. The proposed receivers that use the exact expressions have a computational complexity O(2/sup K/) per bit, where K is the number of users. Using the traditional EM algorithm, we derive low-complexity approximations which have a complexity of O(K/sup 2/) per bit. Simulation results demonstrate that the proposed receivers offer substantial performance gains over conventional pilot-symbol assisted techniques and achieve a performance close to the known-channel bounds. Furthermore, the proposed receivers even outperform the single-user RAKE receiver with Nyquist pilot-insertion rate in a single-user environment.