用深度卷积神经网络检测不同长度多通道心电图记录的心律失常

M. Sallem, Amina Ghrissi, Adnen Saadaoui, V. Zarzoso
{"title":"用深度卷积神经网络检测不同长度多通道心电图记录的心律失常","authors":"M. Sallem, Amina Ghrissi, Adnen Saadaoui, V. Zarzoso","doi":"10.22489/CinC.2020.339","DOIUrl":null,"url":null,"abstract":"Automatic identification of different arrhythmias helps cardiologists better diagnose patients with cardiovascular diseases. Deep learning algorithms are used for the classification of multichannel ECG signals into different heart rhythms. The study dataset includes a cohort of 43101 12- lead ECG recordings with various lengths. Two options are tested to standardize the recordings length: zero padding and signal repetition. Downsampling the recordings to 100 Hz allow handling the problem of different sampling frequencies of data coming from different sources. We design a deep one-dimensional convolutional neural network (CNN) called VGG-ECG, a 13-layer fully CNN for multilabel classification. Our team is called MIndS and our approach achieved a challenge validation score of 0.368, and full test score of -0.128, placing us 38 out of 41 in the official ranking.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detection of Cardiac Arrhythmias From Varied Length Multichannel Electrocardiogram Recordings Using Deep Convolutional Neural Networks\",\"authors\":\"M. Sallem, Amina Ghrissi, Adnen Saadaoui, V. Zarzoso\",\"doi\":\"10.22489/CinC.2020.339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic identification of different arrhythmias helps cardiologists better diagnose patients with cardiovascular diseases. Deep learning algorithms are used for the classification of multichannel ECG signals into different heart rhythms. The study dataset includes a cohort of 43101 12- lead ECG recordings with various lengths. Two options are tested to standardize the recordings length: zero padding and signal repetition. Downsampling the recordings to 100 Hz allow handling the problem of different sampling frequencies of data coming from different sources. We design a deep one-dimensional convolutional neural network (CNN) called VGG-ECG, a 13-layer fully CNN for multilabel classification. Our team is called MIndS and our approach achieved a challenge validation score of 0.368, and full test score of -0.128, placing us 38 out of 41 in the official ranking.\",\"PeriodicalId\":407282,\"journal\":{\"name\":\"2020 Computing in Cardiology\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Computing in Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2020.339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

不同心律失常的自动识别有助于心脏病专家更好地诊断心血管疾病患者。深度学习算法用于将多通道心电信号分类为不同的心律。研究数据集包括43101组不同长度的12导联心电图记录。测试了两个选项来标准化记录长度:零填充和信号重复。将录音降采样到100 Hz,可以处理来自不同来源的数据的不同采样频率的问题。我们设计了一个深度一维卷积神经网络(CNN),称为VGG-ECG,这是一个13层的全CNN,用于多标签分类。我们的团队叫做MIndS,我们的方法获得了0.368的挑战验证分数和-0.128的完整测试分数,在41个官方排名中排名第38位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Cardiac Arrhythmias From Varied Length Multichannel Electrocardiogram Recordings Using Deep Convolutional Neural Networks
Automatic identification of different arrhythmias helps cardiologists better diagnose patients with cardiovascular diseases. Deep learning algorithms are used for the classification of multichannel ECG signals into different heart rhythms. The study dataset includes a cohort of 43101 12- lead ECG recordings with various lengths. Two options are tested to standardize the recordings length: zero padding and signal repetition. Downsampling the recordings to 100 Hz allow handling the problem of different sampling frequencies of data coming from different sources. We design a deep one-dimensional convolutional neural network (CNN) called VGG-ECG, a 13-layer fully CNN for multilabel classification. Our team is called MIndS and our approach achieved a challenge validation score of 0.368, and full test score of -0.128, placing us 38 out of 41 in the official ranking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信