负米勒补偿运算放大器设计的极零估计与分析

Muhaned Zaidi, I. Grout, A. A'Ain
{"title":"负米勒补偿运算放大器设计的极零估计与分析","authors":"Muhaned Zaidi, I. Grout, A. A'Ain","doi":"10.1109/MOCAST.2017.7937617","DOIUrl":null,"url":null,"abstract":"In this paper, pole-zero estimation, analysis and simplification of the transfer function for a two-stage operational amplifier (op-amp) is presented. The circuit design considered is a folded cascode complementary metal oxide semiconductor (CMOS) op-amp incorporating both Miller and negative Miller frequency compensation. The design was created using a 0.35 µm CMOS fabrication process and analyzed for DC gain, unity gain frequency, gain margin, phase margin and open-loop pole and zero locations. Cadence Virtuoso was used for design entry and the Spectre simulator used for circuit level simulation studies. The extracted poles and zeros were used to create the circuit transfer function which was then analyzed using MATLAB. This allowed the transfer function to be simplified by reducing the numbers of poles and zeros for comparison with the frequency response of the original circuit. Finally, a Verilog-A model was created and compared to the original circuit and the MATLAB simulation study results.","PeriodicalId":202381,"journal":{"name":"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pole-zero estimation and analysis of op-amp design with negative Miller compensation\",\"authors\":\"Muhaned Zaidi, I. Grout, A. A'Ain\",\"doi\":\"10.1109/MOCAST.2017.7937617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, pole-zero estimation, analysis and simplification of the transfer function for a two-stage operational amplifier (op-amp) is presented. The circuit design considered is a folded cascode complementary metal oxide semiconductor (CMOS) op-amp incorporating both Miller and negative Miller frequency compensation. The design was created using a 0.35 µm CMOS fabrication process and analyzed for DC gain, unity gain frequency, gain margin, phase margin and open-loop pole and zero locations. Cadence Virtuoso was used for design entry and the Spectre simulator used for circuit level simulation studies. The extracted poles and zeros were used to create the circuit transfer function which was then analyzed using MATLAB. This allowed the transfer function to be simplified by reducing the numbers of poles and zeros for comparison with the frequency response of the original circuit. Finally, a Verilog-A model was created and compared to the original circuit and the MATLAB simulation study results.\",\"PeriodicalId\":202381,\"journal\":{\"name\":\"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOCAST.2017.7937617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST.2017.7937617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种两级运算放大器(运放)的极零估计、传递函数分析和简化方法。电路设计考虑的是一个折叠级联互补金属氧化物半导体(CMOS)运放结合米勒和负米勒频率补偿。该设计采用0.35µm CMOS制造工艺,并分析了直流增益、单位增益频率、增益裕度、相位裕度以及开环极点和零点位置。Cadence Virtuoso用于设计入口,Spectre模拟器用于电路级仿真研究。提取的极点和零点被用来创建电路传递函数,然后用MATLAB对其进行分析。这允许通过减少极点和零点的数量来简化传递函数,以便与原始电路的频率响应进行比较。最后,建立了Verilog-A模型,并与原始电路和MATLAB仿真研究结果进行了对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pole-zero estimation and analysis of op-amp design with negative Miller compensation
In this paper, pole-zero estimation, analysis and simplification of the transfer function for a two-stage operational amplifier (op-amp) is presented. The circuit design considered is a folded cascode complementary metal oxide semiconductor (CMOS) op-amp incorporating both Miller and negative Miller frequency compensation. The design was created using a 0.35 µm CMOS fabrication process and analyzed for DC gain, unity gain frequency, gain margin, phase margin and open-loop pole and zero locations. Cadence Virtuoso was used for design entry and the Spectre simulator used for circuit level simulation studies. The extracted poles and zeros were used to create the circuit transfer function which was then analyzed using MATLAB. This allowed the transfer function to be simplified by reducing the numbers of poles and zeros for comparison with the frequency response of the original circuit. Finally, a Verilog-A model was created and compared to the original circuit and the MATLAB simulation study results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信