回波状态网络预测伪周期时间序列的灵敏度分析

Sebastián Basterrech, G. Rubino, V. Snás̃el
{"title":"回波状态网络预测伪周期时间序列的灵敏度分析","authors":"Sebastián Basterrech, G. Rubino, V. Snás̃el","doi":"10.1109/SOCPAR.2015.7492768","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of the impact of the parameters of an Echo State Network (ESN) on its performance. In particular, we are interested on the parameter behaviour when the model is used for forecasting pseudo-periodic time series. According previous literature, the spectral radius of the hidden-hidden weight matrix of the ESN is a relevant parameter on the model performance. It impacts in the memory capacity and in the accuracy the model. Small values of the spectral radius are recommended for modelling time-series that require short fading memory. On the other hand, a matrix with spectral radius close to the unity is recommended for processing long memory time series. In this article, we figure out that the periodicity of the data is also an important factor to consider in the design of the ESN. Our results show that the better forecasting (according to two metrics of performance) occurs when the hidden-hidden weight matrix has spectral value equal to 0.5. For our analysis we use a public synthetic dataset that has a high periodicity.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sensitivity analysis of echo state networks for forecasting pseudo-periodic time series\",\"authors\":\"Sebastián Basterrech, G. Rubino, V. Snás̃el\",\"doi\":\"10.1109/SOCPAR.2015.7492768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analysis of the impact of the parameters of an Echo State Network (ESN) on its performance. In particular, we are interested on the parameter behaviour when the model is used for forecasting pseudo-periodic time series. According previous literature, the spectral radius of the hidden-hidden weight matrix of the ESN is a relevant parameter on the model performance. It impacts in the memory capacity and in the accuracy the model. Small values of the spectral radius are recommended for modelling time-series that require short fading memory. On the other hand, a matrix with spectral radius close to the unity is recommended for processing long memory time series. In this article, we figure out that the periodicity of the data is also an important factor to consider in the design of the ESN. Our results show that the better forecasting (according to two metrics of performance) occurs when the hidden-hidden weight matrix has spectral value equal to 0.5. For our analysis we use a public synthetic dataset that has a high periodicity.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文分析了回声状态网络(ESN)参数对其性能的影响。特别地,我们对模型用于预测伪周期时间序列时的参数行为感兴趣。根据以往文献,回声状态网络的隐-隐权矩阵的谱半径是影响模型性能的一个相关参数。它会影响记忆容量和模型的准确性。对于需要短衰落记忆的时间序列,建议采用较小的谱半径值。另一方面,对于长记忆时间序列,建议使用谱半径接近单位的矩阵。在本文中,我们发现数据的周期性也是ESN设计中需要考虑的一个重要因素。我们的研究结果表明,当隐含隐含权矩阵的谱值等于0.5时,预测效果较好(根据两个性能指标)。对于我们的分析,我们使用具有高周期性的公共合成数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity analysis of echo state networks for forecasting pseudo-periodic time series
This paper presents an analysis of the impact of the parameters of an Echo State Network (ESN) on its performance. In particular, we are interested on the parameter behaviour when the model is used for forecasting pseudo-periodic time series. According previous literature, the spectral radius of the hidden-hidden weight matrix of the ESN is a relevant parameter on the model performance. It impacts in the memory capacity and in the accuracy the model. Small values of the spectral radius are recommended for modelling time-series that require short fading memory. On the other hand, a matrix with spectral radius close to the unity is recommended for processing long memory time series. In this article, we figure out that the periodicity of the data is also an important factor to consider in the design of the ESN. Our results show that the better forecasting (according to two metrics of performance) occurs when the hidden-hidden weight matrix has spectral value equal to 0.5. For our analysis we use a public synthetic dataset that has a high periodicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信