Mohamed Y. Eldib, Francis Deboeverie, D. V. Haerenborgh, W. Philips, H. Aghajan
{"title":"利用低分辨率视觉传感器网络检测老年人护理中的来访者","authors":"Mohamed Y. Eldib, Francis Deboeverie, D. V. Haerenborgh, W. Philips, H. Aghajan","doi":"10.1145/2789116.2789137","DOIUrl":null,"url":null,"abstract":"Loneliness is a common condition associated with aging and comes with extreme health consequences including decline in physical and mental health, increased mortality and poor living conditions. Detecting and assisting lonely persons is therefore important-especially in the home environment. The current studies analyse the Activities of Daily Living (ADL) usually with the focus on persons living alone, e.g., to detect health deterioration. However, this type of data analysis relies on the assumption of a single person being analysed, and the ADL data analysis becomes less reliable without assessing socialization in seniors for health state assessment and intervention. In this paper, we propose a network of cheap low-resolution visual sensors for the detection of visitors. The visitor analysis starts by visual feature extraction based on foreground/background detection and morphological operations to track the motion patterns in each visual sensor. Then, we utilize the features of the visual sensors to build a Hidden Markov Model (HMM) for the actual detection. Finally, a rule-based classifier is used to compute the number and the duration of visits. We evaluate our framework on a real-life dataset of ten months. The results show a promising visit detection performance when compared to ground truth.","PeriodicalId":113163,"journal":{"name":"Proceedings of the 9th International Conference on Distributed Smart Cameras","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Detection of visitors in elderly care using a low-resolution visual sensor network\",\"authors\":\"Mohamed Y. Eldib, Francis Deboeverie, D. V. Haerenborgh, W. Philips, H. Aghajan\",\"doi\":\"10.1145/2789116.2789137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Loneliness is a common condition associated with aging and comes with extreme health consequences including decline in physical and mental health, increased mortality and poor living conditions. Detecting and assisting lonely persons is therefore important-especially in the home environment. The current studies analyse the Activities of Daily Living (ADL) usually with the focus on persons living alone, e.g., to detect health deterioration. However, this type of data analysis relies on the assumption of a single person being analysed, and the ADL data analysis becomes less reliable without assessing socialization in seniors for health state assessment and intervention. In this paper, we propose a network of cheap low-resolution visual sensors for the detection of visitors. The visitor analysis starts by visual feature extraction based on foreground/background detection and morphological operations to track the motion patterns in each visual sensor. Then, we utilize the features of the visual sensors to build a Hidden Markov Model (HMM) for the actual detection. Finally, a rule-based classifier is used to compute the number and the duration of visits. We evaluate our framework on a real-life dataset of ten months. The results show a promising visit detection performance when compared to ground truth.\",\"PeriodicalId\":113163,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Distributed Smart Cameras\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Distributed Smart Cameras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2789116.2789137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789116.2789137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of visitors in elderly care using a low-resolution visual sensor network
Loneliness is a common condition associated with aging and comes with extreme health consequences including decline in physical and mental health, increased mortality and poor living conditions. Detecting and assisting lonely persons is therefore important-especially in the home environment. The current studies analyse the Activities of Daily Living (ADL) usually with the focus on persons living alone, e.g., to detect health deterioration. However, this type of data analysis relies on the assumption of a single person being analysed, and the ADL data analysis becomes less reliable without assessing socialization in seniors for health state assessment and intervention. In this paper, we propose a network of cheap low-resolution visual sensors for the detection of visitors. The visitor analysis starts by visual feature extraction based on foreground/background detection and morphological operations to track the motion patterns in each visual sensor. Then, we utilize the features of the visual sensors to build a Hidden Markov Model (HMM) for the actual detection. Finally, a rule-based classifier is used to compute the number and the duration of visits. We evaluate our framework on a real-life dataset of ten months. The results show a promising visit detection performance when compared to ground truth.