基于MFCC特征的神经网络语音情感识别

Harshit Dolka, Arul Xavier V M, S. Juliet
{"title":"基于MFCC特征的神经网络语音情感识别","authors":"Harshit Dolka, Arul Xavier V M, S. Juliet","doi":"10.1109/ICSPC51351.2021.9451810","DOIUrl":null,"url":null,"abstract":"Speech Emotion Recognition (SER) is one of the active research topics in Human-Computer Interaction. This paper focuses on training an ANN Model for SER using Mel Frequency Cepstral Coefficients (MFCCs) feature extraction and training it on selected audio datasets to compare the performance. The model can classify audio files based on a total of eight emotional states: happy, sad, angry, surprise, disgust, calm and neutral, although the number of emotions varies in selected datasets. The proposed model gives an average accuracy of 99.52% on the TESS data set, 88.72% on the RAVDESS data set, 71.69% on the CREMA data set, and 86.80% on the SAVEE data set.","PeriodicalId":182885,"journal":{"name":"2021 3rd International Conference on Signal Processing and Communication (ICPSC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Speech Emotion Recognition Using ANN on MFCC Features\",\"authors\":\"Harshit Dolka, Arul Xavier V M, S. Juliet\",\"doi\":\"10.1109/ICSPC51351.2021.9451810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech Emotion Recognition (SER) is one of the active research topics in Human-Computer Interaction. This paper focuses on training an ANN Model for SER using Mel Frequency Cepstral Coefficients (MFCCs) feature extraction and training it on selected audio datasets to compare the performance. The model can classify audio files based on a total of eight emotional states: happy, sad, angry, surprise, disgust, calm and neutral, although the number of emotions varies in selected datasets. The proposed model gives an average accuracy of 99.52% on the TESS data set, 88.72% on the RAVDESS data set, 71.69% on the CREMA data set, and 86.80% on the SAVEE data set.\",\"PeriodicalId\":182885,\"journal\":{\"name\":\"2021 3rd International Conference on Signal Processing and Communication (ICPSC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 3rd International Conference on Signal Processing and Communication (ICPSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPC51351.2021.9451810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Signal Processing and Communication (ICPSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPC51351.2021.9451810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

语音情感识别(SER)是人机交互领域的研究热点之一。本文的重点是使用Mel频率倒谱系数(MFCCs)特征提取来训练一个用于SER的ANN模型,并在选定的音频数据集上进行训练以比较其性能。该模型可以根据八种情绪状态对音频文件进行分类:快乐、悲伤、愤怒、惊讶、厌恶、平静和中性,尽管所选数据集的情绪数量有所不同。该模型在TESS数据集上的平均准确率为99.52%,在RAVDESS数据集上的平均准确率为88.72%,在CREMA数据集上的平均准确率为71.69%,在SAVEE数据集上的平均准确率为86.80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech Emotion Recognition Using ANN on MFCC Features
Speech Emotion Recognition (SER) is one of the active research topics in Human-Computer Interaction. This paper focuses on training an ANN Model for SER using Mel Frequency Cepstral Coefficients (MFCCs) feature extraction and training it on selected audio datasets to compare the performance. The model can classify audio files based on a total of eight emotional states: happy, sad, angry, surprise, disgust, calm and neutral, although the number of emotions varies in selected datasets. The proposed model gives an average accuracy of 99.52% on the TESS data set, 88.72% on the RAVDESS data set, 71.69% on the CREMA data set, and 86.80% on the SAVEE data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信