使用基于黑板的推理代理进行预测分析

Jia Yue, A. Raja, W. Ribarsky
{"title":"使用基于黑板的推理代理进行预测分析","authors":"Jia Yue, A. Raja, W. Ribarsky","doi":"10.1109/WI-IAT.2010.155","DOIUrl":null,"url":null,"abstract":"Significant increase in collected data for investigative tasks and the increased complexity of the reasoning process itself have made investigative analytical tasks more challenging. These tasks are time critical and typically involve identifying and tracking multiple hypotheses; gathering evidence to validate the correct hypotheses and eliminating the incorrect ones. In this paper we specifically address predictive tasks that are concerned with predicting future trends. We describe RESIN, an AI blackboard-based agent that leverages interactive visualizations and mixed-initiative problem solving to enable analysts to explore and pre-process large amounts of data in order to perform predictive analytics. Our empirical evaluation discusses the advantages and challenges of predictive analytics in a complex domain like intelligence analysis.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Predictive Analytics Using a Blackboard-Based Reasoning Agent\",\"authors\":\"Jia Yue, A. Raja, W. Ribarsky\",\"doi\":\"10.1109/WI-IAT.2010.155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant increase in collected data for investigative tasks and the increased complexity of the reasoning process itself have made investigative analytical tasks more challenging. These tasks are time critical and typically involve identifying and tracking multiple hypotheses; gathering evidence to validate the correct hypotheses and eliminating the incorrect ones. In this paper we specifically address predictive tasks that are concerned with predicting future trends. We describe RESIN, an AI blackboard-based agent that leverages interactive visualizations and mixed-initiative problem solving to enable analysts to explore and pre-process large amounts of data in order to perform predictive analytics. Our empirical evaluation discusses the advantages and challenges of predictive analytics in a complex domain like intelligence analysis.\",\"PeriodicalId\":340211,\"journal\":{\"name\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

调查任务收集的数据显著增加,推理过程本身的复杂性增加,使调查分析任务更具挑战性。这些任务时间紧迫,通常涉及识别和跟踪多个假设;收集证据来验证正确的假设,并排除不正确的假设。在本文中,我们特别讨论了与预测未来趋势有关的预测任务。我们描述了RESIN,一个基于人工智能黑板的代理,它利用交互式可视化和混合主动问题解决方案,使分析师能够探索和预处理大量数据,以便执行预测分析。我们的实证评估讨论了预测分析在智能分析等复杂领域的优势和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Analytics Using a Blackboard-Based Reasoning Agent
Significant increase in collected data for investigative tasks and the increased complexity of the reasoning process itself have made investigative analytical tasks more challenging. These tasks are time critical and typically involve identifying and tracking multiple hypotheses; gathering evidence to validate the correct hypotheses and eliminating the incorrect ones. In this paper we specifically address predictive tasks that are concerned with predicting future trends. We describe RESIN, an AI blackboard-based agent that leverages interactive visualizations and mixed-initiative problem solving to enable analysts to explore and pre-process large amounts of data in order to perform predictive analytics. Our empirical evaluation discusses the advantages and challenges of predictive analytics in a complex domain like intelligence analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信