Ying‐Chen Chen, J. Eshraghian, Isaiah Shipley, Maxwell Weiss
{"title":"基于碳基自选择RRAM的记忆监督学习模拟突触行为","authors":"Ying‐Chen Chen, J. Eshraghian, Isaiah Shipley, Maxwell Weiss","doi":"10.1109/ECTC32696.2021.00261","DOIUrl":null,"url":null,"abstract":"New computational paradigms are required to overcome the von-Neumann bottleneck by reducing main memory access. Neuromorphic and in-memory computing has brought on much promise for improving efficiency in a subset of tasks, and emerging memory technologies are inextricably tied to localized memory accesses. However, the sneak path current (SPC) through unselected neighboring cells is a major challenge occurring in high density storage application in the crossbar array configuration. In this work, carbon-based self-selective memory is shown to overcome the SPC problem and additionally is demonstrated to be a potential candidate as a nanodevice for resource-constrained in-memory supervised learning, by taking advantage of its analog synaptic behaviors. Device variation and non-idealities are characterized in the context of neural network regularization, in fulfilling the aim to reduce the ever-increasing power demands of modern computing.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analog Synaptic Behaviors in Carbon-Based Self-Selective RRAM for In-Memory Supervised Learning\",\"authors\":\"Ying‐Chen Chen, J. Eshraghian, Isaiah Shipley, Maxwell Weiss\",\"doi\":\"10.1109/ECTC32696.2021.00261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New computational paradigms are required to overcome the von-Neumann bottleneck by reducing main memory access. Neuromorphic and in-memory computing has brought on much promise for improving efficiency in a subset of tasks, and emerging memory technologies are inextricably tied to localized memory accesses. However, the sneak path current (SPC) through unselected neighboring cells is a major challenge occurring in high density storage application in the crossbar array configuration. In this work, carbon-based self-selective memory is shown to overcome the SPC problem and additionally is demonstrated to be a potential candidate as a nanodevice for resource-constrained in-memory supervised learning, by taking advantage of its analog synaptic behaviors. Device variation and non-idealities are characterized in the context of neural network regularization, in fulfilling the aim to reduce the ever-increasing power demands of modern computing.\",\"PeriodicalId\":351817,\"journal\":{\"name\":\"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC32696.2021.00261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC32696.2021.00261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analog Synaptic Behaviors in Carbon-Based Self-Selective RRAM for In-Memory Supervised Learning
New computational paradigms are required to overcome the von-Neumann bottleneck by reducing main memory access. Neuromorphic and in-memory computing has brought on much promise for improving efficiency in a subset of tasks, and emerging memory technologies are inextricably tied to localized memory accesses. However, the sneak path current (SPC) through unselected neighboring cells is a major challenge occurring in high density storage application in the crossbar array configuration. In this work, carbon-based self-selective memory is shown to overcome the SPC problem and additionally is demonstrated to be a potential candidate as a nanodevice for resource-constrained in-memory supervised learning, by taking advantage of its analog synaptic behaviors. Device variation and non-idealities are characterized in the context of neural network regularization, in fulfilling the aim to reduce the ever-increasing power demands of modern computing.