文献计量学文献分析的逆变换抽样

N. Bakas, Dionisios Koutsantonis, V. Plevris, A. Langousis, S. Chatzichristofis
{"title":"文献计量学文献分析的逆变换抽样","authors":"N. Bakas, Dionisios Koutsantonis, V. Plevris, A. Langousis, S. Chatzichristofis","doi":"10.1109/IISA56318.2022.9904344","DOIUrl":null,"url":null,"abstract":"Scientific literature is prosperously evolving, exhibiting exponential growth in the last decades. For a wide range of scientific thematic areas, it is hard or even impossible for individual researchers to analyze in detail the available published works. For this purpose, we utilize a robust multidimensional scaling procedure, to construct the bibliometric maps of the literature, for keywords, authors and references. Particularly, we propose a generic machine learning algorithm for multidimensional scaling, and describe the algorithmic procedure for the generation of the bibliometric maps.","PeriodicalId":217519,"journal":{"name":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Transform Sampling for Bibliometric Literature Analysis\",\"authors\":\"N. Bakas, Dionisios Koutsantonis, V. Plevris, A. Langousis, S. Chatzichristofis\",\"doi\":\"10.1109/IISA56318.2022.9904344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific literature is prosperously evolving, exhibiting exponential growth in the last decades. For a wide range of scientific thematic areas, it is hard or even impossible for individual researchers to analyze in detail the available published works. For this purpose, we utilize a robust multidimensional scaling procedure, to construct the bibliometric maps of the literature, for keywords, authors and references. Particularly, we propose a generic machine learning algorithm for multidimensional scaling, and describe the algorithmic procedure for the generation of the bibliometric maps.\",\"PeriodicalId\":217519,\"journal\":{\"name\":\"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA56318.2022.9904344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA56318.2022.9904344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

科学文献正在蓬勃发展,在过去的几十年里呈现出指数级的增长。对于范围广泛的科学主题领域,单个研究人员很难甚至不可能详细分析现有的已发表作品。为此,我们利用一个强大的多维尺度程序,构建文献计量图,关键词,作者和参考文献。特别地,我们提出了一种用于多维标度的通用机器学习算法,并描述了生成文献计量图的算法过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Transform Sampling for Bibliometric Literature Analysis
Scientific literature is prosperously evolving, exhibiting exponential growth in the last decades. For a wide range of scientific thematic areas, it is hard or even impossible for individual researchers to analyze in detail the available published works. For this purpose, we utilize a robust multidimensional scaling procedure, to construct the bibliometric maps of the literature, for keywords, authors and references. Particularly, we propose a generic machine learning algorithm for multidimensional scaling, and describe the algorithmic procedure for the generation of the bibliometric maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信