N. Bakas, Dionisios Koutsantonis, V. Plevris, A. Langousis, S. Chatzichristofis
{"title":"文献计量学文献分析的逆变换抽样","authors":"N. Bakas, Dionisios Koutsantonis, V. Plevris, A. Langousis, S. Chatzichristofis","doi":"10.1109/IISA56318.2022.9904344","DOIUrl":null,"url":null,"abstract":"Scientific literature is prosperously evolving, exhibiting exponential growth in the last decades. For a wide range of scientific thematic areas, it is hard or even impossible for individual researchers to analyze in detail the available published works. For this purpose, we utilize a robust multidimensional scaling procedure, to construct the bibliometric maps of the literature, for keywords, authors and references. Particularly, we propose a generic machine learning algorithm for multidimensional scaling, and describe the algorithmic procedure for the generation of the bibliometric maps.","PeriodicalId":217519,"journal":{"name":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Transform Sampling for Bibliometric Literature Analysis\",\"authors\":\"N. Bakas, Dionisios Koutsantonis, V. Plevris, A. Langousis, S. Chatzichristofis\",\"doi\":\"10.1109/IISA56318.2022.9904344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific literature is prosperously evolving, exhibiting exponential growth in the last decades. For a wide range of scientific thematic areas, it is hard or even impossible for individual researchers to analyze in detail the available published works. For this purpose, we utilize a robust multidimensional scaling procedure, to construct the bibliometric maps of the literature, for keywords, authors and references. Particularly, we propose a generic machine learning algorithm for multidimensional scaling, and describe the algorithmic procedure for the generation of the bibliometric maps.\",\"PeriodicalId\":217519,\"journal\":{\"name\":\"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA56318.2022.9904344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA56318.2022.9904344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inverse Transform Sampling for Bibliometric Literature Analysis
Scientific literature is prosperously evolving, exhibiting exponential growth in the last decades. For a wide range of scientific thematic areas, it is hard or even impossible for individual researchers to analyze in detail the available published works. For this purpose, we utilize a robust multidimensional scaling procedure, to construct the bibliometric maps of the literature, for keywords, authors and references. Particularly, we propose a generic machine learning algorithm for multidimensional scaling, and describe the algorithmic procedure for the generation of the bibliometric maps.