俄语文本修辞分析的数据驱动系统研究

Artem Shelmanov, D. Pisarevskaya, Elena Chistova, S. Toldova, M. Kobozeva, I. Smirnov
{"title":"俄语文本修辞分析的数据驱动系统研究","authors":"Artem Shelmanov, D. Pisarevskaya, Elena Chistova, S. Toldova, M. Kobozeva, I. Smirnov","doi":"10.18653/v1/W19-2711","DOIUrl":null,"url":null,"abstract":"Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank – first Russian corpus annotated within RST framework – are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 ± 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources.","PeriodicalId":243254,"journal":{"name":"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards the Data-driven System for Rhetorical Parsing of Russian Texts\",\"authors\":\"Artem Shelmanov, D. Pisarevskaya, Elena Chistova, S. Toldova, M. Kobozeva, I. Smirnov\",\"doi\":\"10.18653/v1/W19-2711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank – first Russian corpus annotated within RST framework – are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 ± 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources.\",\"PeriodicalId\":243254,\"journal\":{\"name\":\"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-2711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-2711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

介绍了在Ru-RSTreebank上训练的机器学习模型的第一次实验评估结果-第一个在RST框架内注释的俄语语料库。使用了各种词汇、数量、形态和语义特征。在修辞关系分类中,选择特征的CatBoost模型与线性支持向量机模型的集成得分最高(宏观F1 = 54.67±0.38)。我们发现,大多数修辞关系分类的重要特征都与来自俄语连接词词典和其他来源的话语连接词有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards the Data-driven System for Rhetorical Parsing of Russian Texts
Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank – first Russian corpus annotated within RST framework – are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 ± 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信