利用ECG拓扑的周期特定变化进行分类任务

Paul Samuel P. Ignacio
{"title":"利用ECG拓扑的周期特定变化进行分类任务","authors":"Paul Samuel P. Ignacio","doi":"10.23919/cinc53138.2021.9662895","DOIUrl":null,"url":null,"abstract":"We explore whether specific time-varying shape characteristics of electrocardiograms can be tapped to inform computational approaches in classifying cardiac abnormalities. In particular, we train a random forest classifier on features derived from relative differences between algebraically-computable topological signatures of consecutive segments within ECGs. We convert segments of ECGs as point cloud embeddings in high-dimensional space, extract their topological summaries, and compare these via statistical descriptors and different metrics. As part of the PhysioNet/Computing in Cardiology Challenge 2021, we (Team Cordi-Ak) test this approach across full-and reduced-lead ECGs. Using the Challenge's evaluation metric, our classifiers received scores of -0.06, -0.07, -0.08, -0.08, and -0.10 (consistently ranked 35th out of 39 official entries) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden test set.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Leveraging Period-Specific Variations in ECG Topology for Classification Tasks\",\"authors\":\"Paul Samuel P. Ignacio\",\"doi\":\"10.23919/cinc53138.2021.9662895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore whether specific time-varying shape characteristics of electrocardiograms can be tapped to inform computational approaches in classifying cardiac abnormalities. In particular, we train a random forest classifier on features derived from relative differences between algebraically-computable topological signatures of consecutive segments within ECGs. We convert segments of ECGs as point cloud embeddings in high-dimensional space, extract their topological summaries, and compare these via statistical descriptors and different metrics. As part of the PhysioNet/Computing in Cardiology Challenge 2021, we (Team Cordi-Ak) test this approach across full-and reduced-lead ECGs. Using the Challenge's evaluation metric, our classifiers received scores of -0.06, -0.07, -0.08, -0.08, and -0.10 (consistently ranked 35th out of 39 official entries) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden test set.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们探索是否可以利用心电图的特定时变形状特征来通知心脏异常分类的计算方法。特别是,我们训练了一个随机森林分类器,该分类器的特征来源于ecg内连续段的代数可计算拓扑特征之间的相对差异。我们将脑电图片段转换为高维空间中的点云嵌入,提取其拓扑摘要,并通过统计描述符和不同度量对其进行比较。作为PhysioNet/Computing in Cardiology Challenge 2021的一部分,我们(Team Cordi-Ak)在全导联和低导联心电图上测试了这种方法。使用挑战的评估指标,我们的分类器在隐藏测试集的12导、6导、4导、3导和2导版本中获得了-0.06、-0.07、-0.08、-0.08和-0.10的分数(在39个正式参赛作品中始终排名第35位)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Period-Specific Variations in ECG Topology for Classification Tasks
We explore whether specific time-varying shape characteristics of electrocardiograms can be tapped to inform computational approaches in classifying cardiac abnormalities. In particular, we train a random forest classifier on features derived from relative differences between algebraically-computable topological signatures of consecutive segments within ECGs. We convert segments of ECGs as point cloud embeddings in high-dimensional space, extract their topological summaries, and compare these via statistical descriptors and different metrics. As part of the PhysioNet/Computing in Cardiology Challenge 2021, we (Team Cordi-Ak) test this approach across full-and reduced-lead ECGs. Using the Challenge's evaluation metric, our classifiers received scores of -0.06, -0.07, -0.08, -0.08, and -0.10 (consistently ranked 35th out of 39 official entries) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信