{"title":"一对一码的期望长度的下界","authors":"N. Alon, A. Orlitsky","doi":"10.1109/ISIT.1994.394765","DOIUrl":null,"url":null,"abstract":"Shows that the expected length of any one-to-one encoding of a discrete random variable X is at least H(X)-log (H(X)+1)-log e and that this bound is asymptotically achievable.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"A lower bound on the expected length of one-to-one codes\",\"authors\":\"N. Alon, A. Orlitsky\",\"doi\":\"10.1109/ISIT.1994.394765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shows that the expected length of any one-to-one encoding of a discrete random variable X is at least H(X)-log (H(X)+1)-log e and that this bound is asymptotically achievable.<<ETX>>\",\"PeriodicalId\":331390,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1994.394765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A lower bound on the expected length of one-to-one codes
Shows that the expected length of any one-to-one encoding of a discrete random variable X is at least H(X)-log (H(X)+1)-log e and that this bound is asymptotically achievable.<>