电子系统用柔性聚合物中空纤维热交换器

M. Raudenský, I. Astrouski, T. Brozova, E. Bartuli
{"title":"电子系统用柔性聚合物中空纤维热交换器","authors":"M. Raudenský, I. Astrouski, T. Brozova, E. Bartuli","doi":"10.1109/ITHERM.2016.7517677","DOIUrl":null,"url":null,"abstract":"Cooling electronics boxes often requires extraction of high heat fluxes from closed boxes with many heat-producing components. The direct use of ventilation is sometimes limited by demands to use hermetic units or the need to extract heat from a specific place in a large and complicated system. A liquid system introduced inside of the electronic box can be used for this purpose. Unfortunately, metallic heat exchangers have a number of shortcomings in these applications, including significant weight as well as cost and space demands. Polymeric heat exchangers consisting of hollow fibers were proposed a decade ago and can be used as an alternative in such applications. Flexible polymeric hollow fiber heat exchangers were prepared and tested in liquid / air conditions. These heat exchangers use plastic capillaries with an outer diameter of 0.5 - 0.8 mm and a wall thickness of 10% of the outer diameter. They consist of flexible fibers and can be used in narrow slots and/or in shaped channels. These heat exchangers are effective even in natural convection applications because of their high heat transfer intensity on micro-objects. Experimentally obtained overall heat-transfer coefficients in water/air applications are up to 250 W/m2 K for forced convection and up to 80 W/m2 for natural convection. The use of plastic and non-corrosive materials is advantageous in electronic systems where high heat fluxes must be extracted safely from difficult to access spaces or from hermetically-sealed boxes.","PeriodicalId":426908,"journal":{"name":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Flexible polymeric hollow fiber heat exchangers for electronic systems\",\"authors\":\"M. Raudenský, I. Astrouski, T. Brozova, E. Bartuli\",\"doi\":\"10.1109/ITHERM.2016.7517677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooling electronics boxes often requires extraction of high heat fluxes from closed boxes with many heat-producing components. The direct use of ventilation is sometimes limited by demands to use hermetic units or the need to extract heat from a specific place in a large and complicated system. A liquid system introduced inside of the electronic box can be used for this purpose. Unfortunately, metallic heat exchangers have a number of shortcomings in these applications, including significant weight as well as cost and space demands. Polymeric heat exchangers consisting of hollow fibers were proposed a decade ago and can be used as an alternative in such applications. Flexible polymeric hollow fiber heat exchangers were prepared and tested in liquid / air conditions. These heat exchangers use plastic capillaries with an outer diameter of 0.5 - 0.8 mm and a wall thickness of 10% of the outer diameter. They consist of flexible fibers and can be used in narrow slots and/or in shaped channels. These heat exchangers are effective even in natural convection applications because of their high heat transfer intensity on micro-objects. Experimentally obtained overall heat-transfer coefficients in water/air applications are up to 250 W/m2 K for forced convection and up to 80 W/m2 for natural convection. The use of plastic and non-corrosive materials is advantageous in electronic systems where high heat fluxes must be extracted safely from difficult to access spaces or from hermetically-sealed boxes.\",\"PeriodicalId\":426908,\"journal\":{\"name\":\"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2016.7517677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2016.7517677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

冷却电子箱通常需要从具有许多发热部件的封闭箱中提取高热流。直接使用通风有时受到使用密封装置的要求或需要从大型复杂系统中的特定位置提取热量的限制。在电子盒内部引入的液体系统可用于此目的。不幸的是,金属热交换器在这些应用中有许多缺点,包括显著的重量以及成本和空间需求。由中空纤维组成的聚合物热交换器是十年前提出的,可以作为此类应用的替代方案。制备了柔性聚合物中空纤维换热器,并在液/空条件下进行了试验。这些热交换器使用塑料毛细管,外径0.5 - 0.8毫米,壁厚为外径的10%。它们由柔性纤维组成,可用于窄槽和/或形状通道。这些热交换器即使在自然对流应用中也是有效的,因为它们对微物体的高传热强度。实验获得的水/空气应用中的总体传热系数在强制对流中高达250 W/m2 K,在自然对流中高达80 W/m2。在电子系统中,必须从难以进入的空间或密封盒中安全地提取高热流的情况下,使用塑料和非腐蚀性材料是有利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible polymeric hollow fiber heat exchangers for electronic systems
Cooling electronics boxes often requires extraction of high heat fluxes from closed boxes with many heat-producing components. The direct use of ventilation is sometimes limited by demands to use hermetic units or the need to extract heat from a specific place in a large and complicated system. A liquid system introduced inside of the electronic box can be used for this purpose. Unfortunately, metallic heat exchangers have a number of shortcomings in these applications, including significant weight as well as cost and space demands. Polymeric heat exchangers consisting of hollow fibers were proposed a decade ago and can be used as an alternative in such applications. Flexible polymeric hollow fiber heat exchangers were prepared and tested in liquid / air conditions. These heat exchangers use plastic capillaries with an outer diameter of 0.5 - 0.8 mm and a wall thickness of 10% of the outer diameter. They consist of flexible fibers and can be used in narrow slots and/or in shaped channels. These heat exchangers are effective even in natural convection applications because of their high heat transfer intensity on micro-objects. Experimentally obtained overall heat-transfer coefficients in water/air applications are up to 250 W/m2 K for forced convection and up to 80 W/m2 for natural convection. The use of plastic and non-corrosive materials is advantageous in electronic systems where high heat fluxes must be extracted safely from difficult to access spaces or from hermetically-sealed boxes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信