挖掘数据流中不常见的模式

R. Lakshmi, C. Hemalatha, V. Vaidehi
{"title":"挖掘数据流中不常见的模式","authors":"R. Lakshmi, C. Hemalatha, V. Vaidehi","doi":"10.1109/ICRTIT.2014.6996199","DOIUrl":null,"url":null,"abstract":"In recent years researches are focused towards mining infrequent patterns rather than frequent patterns. Mining infrequent pattern plays vital role in detecting any abnormal event. In this paper, an algorithm named Infrequent Pattern Miner for Data Streams (IPM-DS) is proposed for mining nonzero infrequent patterns from data streams. The proposed algorithm adopts the FP-growth based approach for generating all infrequent patterns. The proposed algorithm (IPM-DS) is evaluated using health data set collected from wearable physiological sensors that measure vital parameters such as Heart Rate (HR), Breathing Rate (BR), Oxygen Saturation (SPO2) and Blood pressure (BP) and also with two publically available data sets such as e-coli and Wine from UCI repository. The experimental results show that the proposed algorithm generates all possible infrequent patterns in less time.","PeriodicalId":422275,"journal":{"name":"2014 International Conference on Recent Trends in Information Technology","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mining infrequent patterns in data stream\",\"authors\":\"R. Lakshmi, C. Hemalatha, V. Vaidehi\",\"doi\":\"10.1109/ICRTIT.2014.6996199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years researches are focused towards mining infrequent patterns rather than frequent patterns. Mining infrequent pattern plays vital role in detecting any abnormal event. In this paper, an algorithm named Infrequent Pattern Miner for Data Streams (IPM-DS) is proposed for mining nonzero infrequent patterns from data streams. The proposed algorithm adopts the FP-growth based approach for generating all infrequent patterns. The proposed algorithm (IPM-DS) is evaluated using health data set collected from wearable physiological sensors that measure vital parameters such as Heart Rate (HR), Breathing Rate (BR), Oxygen Saturation (SPO2) and Blood pressure (BP) and also with two publically available data sets such as e-coli and Wine from UCI repository. The experimental results show that the proposed algorithm generates all possible infrequent patterns in less time.\",\"PeriodicalId\":422275,\"journal\":{\"name\":\"2014 International Conference on Recent Trends in Information Technology\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Recent Trends in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2014.6996199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Recent Trends in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2014.6996199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来的研究主要集中在非频繁模式的挖掘上,而不是频繁模式的挖掘。挖掘非频繁模式对异常事件的检测起着至关重要的作用。本文提出了一种从数据流中挖掘非零非频繁模式的算法——数据流非频繁模式挖掘算法(IPM-DS)。该算法采用基于fp增长的方法生成所有非频繁模式。所提出的算法(IPM-DS)使用从可穿戴生理传感器收集的健康数据集进行评估,这些数据集测量心率(HR)、呼吸频率(BR)、氧饱和度(SPO2)和血压(BP)等重要参数,以及两个公开可用的数据集,如UCI存储库中的大肠杆菌和葡萄酒。实验结果表明,该算法能在较短的时间内生成所有可能的非频繁模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining infrequent patterns in data stream
In recent years researches are focused towards mining infrequent patterns rather than frequent patterns. Mining infrequent pattern plays vital role in detecting any abnormal event. In this paper, an algorithm named Infrequent Pattern Miner for Data Streams (IPM-DS) is proposed for mining nonzero infrequent patterns from data streams. The proposed algorithm adopts the FP-growth based approach for generating all infrequent patterns. The proposed algorithm (IPM-DS) is evaluated using health data set collected from wearable physiological sensors that measure vital parameters such as Heart Rate (HR), Breathing Rate (BR), Oxygen Saturation (SPO2) and Blood pressure (BP) and also with two publically available data sets such as e-coli and Wine from UCI repository. The experimental results show that the proposed algorithm generates all possible infrequent patterns in less time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信