Kazi Shah Nawaz Ripon, Chi-Ho Tsang, S. Kwong, M. Ip
{"title":"基于变长真实跳跃基因遗传算法的多目标进化聚类","authors":"Kazi Shah Nawaz Ripon, Chi-Ho Tsang, S. Kwong, M. Ip","doi":"10.1109/ICPR.2006.827","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel multi-objective evolutionary clustering approach using variable-length real jumping genes genetic algorithms (VRJGGA). The proposed algorithm that extends jumping genes genetic algorithm (JGGA) (Man et al., 2004) evolves near-optimal clustering solutions using multiple clustering criteria, without a-priori knowledge of the actual number of clusters. Experimental results based on several artificial and real-world data show that VRJGGA can obtain non-dominated and near-optimal clustering solutions in terms of different cluster quality measures and classification performance","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Multi-Objective Evolutionary Clustering using Variable-Length Real Jumping Genes Genetic Algorithm\",\"authors\":\"Kazi Shah Nawaz Ripon, Chi-Ho Tsang, S. Kwong, M. Ip\",\"doi\":\"10.1109/ICPR.2006.827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel multi-objective evolutionary clustering approach using variable-length real jumping genes genetic algorithms (VRJGGA). The proposed algorithm that extends jumping genes genetic algorithm (JGGA) (Man et al., 2004) evolves near-optimal clustering solutions using multiple clustering criteria, without a-priori knowledge of the actual number of clusters. Experimental results based on several artificial and real-world data show that VRJGGA can obtain non-dominated and near-optimal clustering solutions in terms of different cluster quality measures and classification performance\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
摘要
提出了一种基于变长真实跳跃基因遗传算法(VRJGGA)的多目标进化聚类方法。提出的算法扩展了跳跃基因遗传算法(JGGA) (Man et al., 2004),使用多个聚类标准进化出接近最优的聚类解决方案,而不需要先验地了解实际聚类的数量。基于人工和真实数据的实验结果表明,VRJGGA在不同的聚类质量度量和分类性能方面都可以获得非支配和近最优聚类解
Multi-Objective Evolutionary Clustering using Variable-Length Real Jumping Genes Genetic Algorithm
In this paper, we present a novel multi-objective evolutionary clustering approach using variable-length real jumping genes genetic algorithms (VRJGGA). The proposed algorithm that extends jumping genes genetic algorithm (JGGA) (Man et al., 2004) evolves near-optimal clustering solutions using multiple clustering criteria, without a-priori knowledge of the actual number of clusters. Experimental results based on several artificial and real-world data show that VRJGGA can obtain non-dominated and near-optimal clustering solutions in terms of different cluster quality measures and classification performance