基于变长真实跳跃基因遗传算法的多目标进化聚类

Kazi Shah Nawaz Ripon, Chi-Ho Tsang, S. Kwong, M. Ip
{"title":"基于变长真实跳跃基因遗传算法的多目标进化聚类","authors":"Kazi Shah Nawaz Ripon, Chi-Ho Tsang, S. Kwong, M. Ip","doi":"10.1109/ICPR.2006.827","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel multi-objective evolutionary clustering approach using variable-length real jumping genes genetic algorithms (VRJGGA). The proposed algorithm that extends jumping genes genetic algorithm (JGGA) (Man et al., 2004) evolves near-optimal clustering solutions using multiple clustering criteria, without a-priori knowledge of the actual number of clusters. Experimental results based on several artificial and real-world data show that VRJGGA can obtain non-dominated and near-optimal clustering solutions in terms of different cluster quality measures and classification performance","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Multi-Objective Evolutionary Clustering using Variable-Length Real Jumping Genes Genetic Algorithm\",\"authors\":\"Kazi Shah Nawaz Ripon, Chi-Ho Tsang, S. Kwong, M. Ip\",\"doi\":\"10.1109/ICPR.2006.827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel multi-objective evolutionary clustering approach using variable-length real jumping genes genetic algorithms (VRJGGA). The proposed algorithm that extends jumping genes genetic algorithm (JGGA) (Man et al., 2004) evolves near-optimal clustering solutions using multiple clustering criteria, without a-priori knowledge of the actual number of clusters. Experimental results based on several artificial and real-world data show that VRJGGA can obtain non-dominated and near-optimal clustering solutions in terms of different cluster quality measures and classification performance\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

提出了一种基于变长真实跳跃基因遗传算法(VRJGGA)的多目标进化聚类方法。提出的算法扩展了跳跃基因遗传算法(JGGA) (Man et al., 2004),使用多个聚类标准进化出接近最优的聚类解决方案,而不需要先验地了解实际聚类的数量。基于人工和真实数据的实验结果表明,VRJGGA在不同的聚类质量度量和分类性能方面都可以获得非支配和近最优聚类解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Objective Evolutionary Clustering using Variable-Length Real Jumping Genes Genetic Algorithm
In this paper, we present a novel multi-objective evolutionary clustering approach using variable-length real jumping genes genetic algorithms (VRJGGA). The proposed algorithm that extends jumping genes genetic algorithm (JGGA) (Man et al., 2004) evolves near-optimal clustering solutions using multiple clustering criteria, without a-priori knowledge of the actual number of clusters. Experimental results based on several artificial and real-world data show that VRJGGA can obtain non-dominated and near-optimal clustering solutions in terms of different cluster quality measures and classification performance
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信