{"title":"高光谱图像的大气和地形校正","authors":"V. Achard, X. Lenot","doi":"10.1109/WHISPERS.2009.5289098","DOIUrl":null,"url":null,"abstract":"In mountainous areas, slope and altitude variations modulate the airborne sensed hyperspectral radiance image. A new algorithm, SIERRA, has been developed for atmospheric, relief and BRDF corrections in order to extract the surface reflectance in the form of bi-hemispherical albedo that does not depend on solar incidence and observation angles. The forward modeling efforts focus on the estimation of diffuse irradiance and upwelling diffuse radiance, and on the formulation of BRDF effects. The inversion scheme consists of four steps, that go deeper and deeper into the phenomena's complexity. SIERRA is applied to HyMap data. The benefit of topographic correction is clearly demonstrated.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Atmospheric and topographic corrections for hyperspectral imagery\",\"authors\":\"V. Achard, X. Lenot\",\"doi\":\"10.1109/WHISPERS.2009.5289098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In mountainous areas, slope and altitude variations modulate the airborne sensed hyperspectral radiance image. A new algorithm, SIERRA, has been developed for atmospheric, relief and BRDF corrections in order to extract the surface reflectance in the form of bi-hemispherical albedo that does not depend on solar incidence and observation angles. The forward modeling efforts focus on the estimation of diffuse irradiance and upwelling diffuse radiance, and on the formulation of BRDF effects. The inversion scheme consists of four steps, that go deeper and deeper into the phenomena's complexity. SIERRA is applied to HyMap data. The benefit of topographic correction is clearly demonstrated.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5289098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atmospheric and topographic corrections for hyperspectral imagery
In mountainous areas, slope and altitude variations modulate the airborne sensed hyperspectral radiance image. A new algorithm, SIERRA, has been developed for atmospheric, relief and BRDF corrections in order to extract the surface reflectance in the form of bi-hemispherical albedo that does not depend on solar incidence and observation angles. The forward modeling efforts focus on the estimation of diffuse irradiance and upwelling diffuse radiance, and on the formulation of BRDF effects. The inversion scheme consists of four steps, that go deeper and deeper into the phenomena's complexity. SIERRA is applied to HyMap data. The benefit of topographic correction is clearly demonstrated.