lp和sdp的量子内点法

Iordanis Kerenidis, A. Prakash
{"title":"lp和sdp的量子内点法","authors":"Iordanis Kerenidis, A. Prakash","doi":"10.1145/3406306","DOIUrl":null,"url":null,"abstract":"We present a quantum interior point method (IPM) for semi-definite programs that has a worst-case running time of Õ(n2.5 / ξ2 μ κ 3 log(1/ε)). The algorithm outputs a pair of matrices (S,Y) that have objective value within ε of the optimal and satisfy the constraints approximately to error xi. The parameter mu is at most √2n while kappa is an upper bound on the condition number of the intermediate solution matrices arising in the classical IPM. For the case where κ ≪ n5/6, our method provides a significant polynomial speedup over the best-known classical semi-definite program solvers that have a worst-case running time of Õ(n6). For linear programs, our algorithm has a running time of Õ(n1.5 / ξ2 μ κ 3 log (1/ε)) with the same guarantees and with parameter μ < √2n. Our technical contributions include an efficient quantum procedure for solving the Newton linear systems arising in the classical IPMs, an efficient pure state tomography algorithm, and an analysis of the IPM where the linear systems are solved approximately. Our results pave the way for the development of quantum algorithms with significant polynomial speedups for applications in optimization and machine learning.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"A Quantum Interior Point Method for LPs and SDPs\",\"authors\":\"Iordanis Kerenidis, A. Prakash\",\"doi\":\"10.1145/3406306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a quantum interior point method (IPM) for semi-definite programs that has a worst-case running time of Õ(n2.5 / ξ2 μ κ 3 log(1/ε)). The algorithm outputs a pair of matrices (S,Y) that have objective value within ε of the optimal and satisfy the constraints approximately to error xi. The parameter mu is at most √2n while kappa is an upper bound on the condition number of the intermediate solution matrices arising in the classical IPM. For the case where κ ≪ n5/6, our method provides a significant polynomial speedup over the best-known classical semi-definite program solvers that have a worst-case running time of Õ(n6). For linear programs, our algorithm has a running time of Õ(n1.5 / ξ2 μ κ 3 log (1/ε)) with the same guarantees and with parameter μ < √2n. Our technical contributions include an efficient quantum procedure for solving the Newton linear systems arising in the classical IPMs, an efficient pure state tomography algorithm, and an analysis of the IPM where the linear systems are solved approximately. Our results pave the way for the development of quantum algorithms with significant polynomial speedups for applications in optimization and machine learning.\",\"PeriodicalId\":365166,\"journal\":{\"name\":\"ACM Transactions on Quantum Computing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3406306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105

摘要

针对最坏情况运行时间为Õ(n2.5 / ξ2 μ κ 3 log(1/ε))的半确定程序,提出了一种量子内点法(IPM)。该算法输出一对矩阵(S,Y),其目标值在最优值的ε范围内,且满足近似于误差xi的约束。参数mu最大为√2n, kappa是经典IPM中出现的中间解矩阵的条件数的上界。对于κ≪n5/6的情况,我们的方法比最著名的经典半确定程序解算器提供了显著的多项式加速,这些解算器的最坏情况运行时间为Õ(n6)。对于线性规划,我们的算法运行时间为Õ(n1.5 / ξ2 μ κ 3 log (1/ε)),具有相同的保证,参数μ <√2n。我们的技术贡献包括求解经典IPM中出现的牛顿线性系统的有效量子程序,有效的纯态层析算法,以及对线性系统近似求解的IPM的分析。我们的研究结果为量子算法的发展铺平了道路,这些算法具有显著的多项式加速,可用于优化和机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Quantum Interior Point Method for LPs and SDPs
We present a quantum interior point method (IPM) for semi-definite programs that has a worst-case running time of Õ(n2.5 / ξ2 μ κ 3 log(1/ε)). The algorithm outputs a pair of matrices (S,Y) that have objective value within ε of the optimal and satisfy the constraints approximately to error xi. The parameter mu is at most √2n while kappa is an upper bound on the condition number of the intermediate solution matrices arising in the classical IPM. For the case where κ ≪ n5/6, our method provides a significant polynomial speedup over the best-known classical semi-definite program solvers that have a worst-case running time of Õ(n6). For linear programs, our algorithm has a running time of Õ(n1.5 / ξ2 μ κ 3 log (1/ε)) with the same guarantees and with parameter μ < √2n. Our technical contributions include an efficient quantum procedure for solving the Newton linear systems arising in the classical IPMs, an efficient pure state tomography algorithm, and an analysis of the IPM where the linear systems are solved approximately. Our results pave the way for the development of quantum algorithms with significant polynomial speedups for applications in optimization and machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信