用于储能的高温聚酰亚胺介电材料

J. Zha, Xue-Jie Liu, Yaya Tian, Z. Dang, George Chen
{"title":"用于储能的高温聚酰亚胺介电材料","authors":"J. Zha, Xue-Jie Liu, Yaya Tian, Z. Dang, George Chen","doi":"10.5772/intechopen.92260","DOIUrl":null,"url":null,"abstract":"The availability of high-temperature dielectrics is key to develop advanced electronics and power systems that operate under extreme environmental conditions. In the past few years, many improvements have been made and many exciting developments have taken place. However, currently available candidate materials and methods still do not meet the applicable standards. Polyimide (PI) was found to be the preferred choice for high-temperature dielectric films development due to its thermal stability, dielectric properties, and flexibility. However, it has disadvantages such as a relatively low dielectric permittivity. This chapter presents an overview of recent progress on PI dielectric materials for high-temperature capacitive energy storage applications. In this way, a new molecular design of the skeleton structure of PI should be performed to balance size and thermal stability and to optimize energy storage property for high-temperature application. The improved performance can be generated via incorporation of inorganic units into polymers to form organic-inorganic hybrid and composite structures.","PeriodicalId":131194,"journal":{"name":"Polyimide for Electronic and Electrical Engineering Applications","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"High-Temperature Polyimide Dielectric Materials for Energy Storage\",\"authors\":\"J. Zha, Xue-Jie Liu, Yaya Tian, Z. Dang, George Chen\",\"doi\":\"10.5772/intechopen.92260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of high-temperature dielectrics is key to develop advanced electronics and power systems that operate under extreme environmental conditions. In the past few years, many improvements have been made and many exciting developments have taken place. However, currently available candidate materials and methods still do not meet the applicable standards. Polyimide (PI) was found to be the preferred choice for high-temperature dielectric films development due to its thermal stability, dielectric properties, and flexibility. However, it has disadvantages such as a relatively low dielectric permittivity. This chapter presents an overview of recent progress on PI dielectric materials for high-temperature capacitive energy storage applications. In this way, a new molecular design of the skeleton structure of PI should be performed to balance size and thermal stability and to optimize energy storage property for high-temperature application. The improved performance can be generated via incorporation of inorganic units into polymers to form organic-inorganic hybrid and composite structures.\",\"PeriodicalId\":131194,\"journal\":{\"name\":\"Polyimide for Electronic and Electrical Engineering Applications\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polyimide for Electronic and Electrical Engineering Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.92260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyimide for Electronic and Electrical Engineering Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

高温电介质的可用性是开发在极端环境条件下运行的先进电子和电力系统的关键。在过去的几年中,已经取得了许多改进,并发生了许多令人兴奋的发展。然而,目前可用的候选材料和方法仍不符合适用标准。聚酰亚胺(PI)由于其热稳定性、介电性能和柔韧性被认为是高温介质薄膜的首选材料。然而,它有缺点,如相对较低的介电常数。本章概述了用于高温电容储能的PI介电材料的最新进展。因此,需要对PI的骨架结构进行新的分子设计,以平衡尺寸和热稳定性,并优化高温应用的储能性能。可以通过将无机单元掺入聚合物中形成有机-无机杂化和复合结构来提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Temperature Polyimide Dielectric Materials for Energy Storage
The availability of high-temperature dielectrics is key to develop advanced electronics and power systems that operate under extreme environmental conditions. In the past few years, many improvements have been made and many exciting developments have taken place. However, currently available candidate materials and methods still do not meet the applicable standards. Polyimide (PI) was found to be the preferred choice for high-temperature dielectric films development due to its thermal stability, dielectric properties, and flexibility. However, it has disadvantages such as a relatively low dielectric permittivity. This chapter presents an overview of recent progress on PI dielectric materials for high-temperature capacitive energy storage applications. In this way, a new molecular design of the skeleton structure of PI should be performed to balance size and thermal stability and to optimize energy storage property for high-temperature application. The improved performance can be generated via incorporation of inorganic units into polymers to form organic-inorganic hybrid and composite structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信