瑞利信道OFDM信号的盲识别

Bin Wang, L. Ge
{"title":"瑞利信道OFDM信号的盲识别","authors":"Bin Wang, L. Ge","doi":"10.1109/ICICS.2005.1689190","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm for the blind identification of OFDM (orthogonal frequency division multiplexing) signal from the single-carrier modulated signals in the Rayleigh channels. The algorithm doesn't need any prior knowledge of the signals, such as SNR (signal to noise ratio), symbol rate and carrier frequency, and deals with the bandpass signals directly avoiding the carrier recovering process. Simulation results prove the feasibility and show that an over 95% correct classification rate could be reached when the SNR is above 0 dB","PeriodicalId":425178,"journal":{"name":"2005 5th International Conference on Information Communications & Signal Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Blind Identification of OFDM Signal in Rayleigh Channels\",\"authors\":\"Bin Wang, L. Ge\",\"doi\":\"10.1109/ICICS.2005.1689190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an algorithm for the blind identification of OFDM (orthogonal frequency division multiplexing) signal from the single-carrier modulated signals in the Rayleigh channels. The algorithm doesn't need any prior knowledge of the signals, such as SNR (signal to noise ratio), symbol rate and carrier frequency, and deals with the bandpass signals directly avoiding the carrier recovering process. Simulation results prove the feasibility and show that an over 95% correct classification rate could be reached when the SNR is above 0 dB\",\"PeriodicalId\":425178,\"journal\":{\"name\":\"2005 5th International Conference on Information Communications & Signal Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 5th International Conference on Information Communications & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.2005.1689190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 5th International Conference on Information Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2005.1689190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种从瑞利信道中单载波调制信号中盲识别正交频分复用(OFDM)信号的算法。该算法不需要任何信号的先验知识,如信噪比、符号率和载波频率,直接处理带通信号,避免了载波恢复过程。仿真结果证明了该方法的可行性,当信噪比大于0 dB时,分类正确率可达95%以上
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind Identification of OFDM Signal in Rayleigh Channels
This paper proposes an algorithm for the blind identification of OFDM (orthogonal frequency division multiplexing) signal from the single-carrier modulated signals in the Rayleigh channels. The algorithm doesn't need any prior knowledge of the signals, such as SNR (signal to noise ratio), symbol rate and carrier frequency, and deals with the bandpass signals directly avoiding the carrier recovering process. Simulation results prove the feasibility and show that an over 95% correct classification rate could be reached when the SNR is above 0 dB
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信