{"title":"MEMS光差分可重构门阵列的优异容错性能","authors":"Hironobu Morita, Minoru Watanabe","doi":"10.1109/OMEMS.2010.5672149","DOIUrl":null,"url":null,"abstract":"This paper presents a four-context MEMS optically differential reconfigurable gate array that is useful in a space radiation environment. The technique enables rapid recovery of a programmable device that has been damaged by high-energy charged particles. It can use incorrect configuration data including some error bits resulting from damage by particles. This paper also clarifies the fault tolerance of the MEMS optically differential reconfigurable gate array.","PeriodicalId":421895,"journal":{"name":"2010 International Conference on Optical MEMS and Nanophotonics","volume":"38 10S 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excellent fault tolerance of a MEMS optically differential reconfigurable gate array\",\"authors\":\"Hironobu Morita, Minoru Watanabe\",\"doi\":\"10.1109/OMEMS.2010.5672149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a four-context MEMS optically differential reconfigurable gate array that is useful in a space radiation environment. The technique enables rapid recovery of a programmable device that has been damaged by high-energy charged particles. It can use incorrect configuration data including some error bits resulting from damage by particles. This paper also clarifies the fault tolerance of the MEMS optically differential reconfigurable gate array.\",\"PeriodicalId\":421895,\"journal\":{\"name\":\"2010 International Conference on Optical MEMS and Nanophotonics\",\"volume\":\"38 10S 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Optical MEMS and Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMEMS.2010.5672149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Optical MEMS and Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMEMS.2010.5672149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Excellent fault tolerance of a MEMS optically differential reconfigurable gate array
This paper presents a four-context MEMS optically differential reconfigurable gate array that is useful in a space radiation environment. The technique enables rapid recovery of a programmable device that has been damaged by high-energy charged particles. It can use incorrect configuration data including some error bits resulting from damage by particles. This paper also clarifies the fault tolerance of the MEMS optically differential reconfigurable gate array.