基于HOG和AdaBoost的二维码检测的初步研究

Yih-Lon Lin, Chung-Ming Sung
{"title":"基于HOG和AdaBoost的二维码检测的初步研究","authors":"Yih-Lon Lin, Chung-Ming Sung","doi":"10.1109/SOCPAR.2015.7492766","DOIUrl":null,"url":null,"abstract":"In this paper, an approach of QR code detection using histograms of oriented gradients (HOG) and AdaBoost is proposed. There are two steps in our approach. In the first step, feature vectors are extracted using HOG with various cell sizes and overlapping or non-overlapping blocks. In the second step, the AdaBoost algorithms are trained by the input feature vectors from HOG and output targets. The QR code position is then detected via the predicted outputs from the AdaBoost algorithm. Experimental results show that the proposed method is an effective way to detect QR code position. Frankly speaking, the results reported here only provide preliminary study on QR code detection using HOG and AdaBoost.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Preliminary study on QR code detection using HOG and AdaBoost\",\"authors\":\"Yih-Lon Lin, Chung-Ming Sung\",\"doi\":\"10.1109/SOCPAR.2015.7492766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an approach of QR code detection using histograms of oriented gradients (HOG) and AdaBoost is proposed. There are two steps in our approach. In the first step, feature vectors are extracted using HOG with various cell sizes and overlapping or non-overlapping blocks. In the second step, the AdaBoost algorithms are trained by the input feature vectors from HOG and output targets. The QR code position is then detected via the predicted outputs from the AdaBoost algorithm. Experimental results show that the proposed method is an effective way to detect QR code position. Frankly speaking, the results reported here only provide preliminary study on QR code detection using HOG and AdaBoost.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于定向梯度直方图(HOG)和AdaBoost的QR码检测方法。我们的方法有两个步骤。在第一步中,使用具有不同单元大小和重叠或不重叠块的HOG提取特征向量。第二步,利用HOG和输出目标的输入特征向量对AdaBoost算法进行训练。然后通过AdaBoost算法的预测输出检测QR码的位置。实验结果表明,该方法是一种有效的QR码位置检测方法。坦率地说,这里报告的结果只是对使用HOG和AdaBoost进行二维码检测的初步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preliminary study on QR code detection using HOG and AdaBoost
In this paper, an approach of QR code detection using histograms of oriented gradients (HOG) and AdaBoost is proposed. There are two steps in our approach. In the first step, feature vectors are extracted using HOG with various cell sizes and overlapping or non-overlapping blocks. In the second step, the AdaBoost algorithms are trained by the input feature vectors from HOG and output targets. The QR code position is then detected via the predicted outputs from the AdaBoost algorithm. Experimental results show that the proposed method is an effective way to detect QR code position. Frankly speaking, the results reported here only provide preliminary study on QR code detection using HOG and AdaBoost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信