使用基于补丁的合成增强神经风格转移

Ondrej Texler, J. Fiser, Mike Lukáč, Jingwan Lu, Eli Shechtman, D. Sýkora
{"title":"使用基于补丁的合成增强神经风格转移","authors":"Ondrej Texler, J. Fiser, Mike Lukáč, Jingwan Lu, Eli Shechtman, D. Sýkora","doi":"10.2312/EXP.20191075","DOIUrl":null,"url":null,"abstract":"We present a new approach to example-based style transfer which combines neural methods with patch-based synthesis to achieve compelling stylization quality even for high-resolution imagery. We take advantage of neural techniques to provide adequate stylization at the global level and use their output as a prior for subsequent patch-based synthesis at the detail level. Thanks to this combination, our method keeps the high frequencies of the original artistic media better, thereby dramatically increases the fidelity of the resulting stylized imagery. We also show how to stylize extremely large images (e.g., 340 Mpix) without the need to run the synthesis at the pixel level, yet retaining the original high-frequency details.","PeriodicalId":407491,"journal":{"name":"Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Enhancing neural style transfer using patch-based synthesis\",\"authors\":\"Ondrej Texler, J. Fiser, Mike Lukáč, Jingwan Lu, Eli Shechtman, D. Sýkora\",\"doi\":\"10.2312/EXP.20191075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new approach to example-based style transfer which combines neural methods with patch-based synthesis to achieve compelling stylization quality even for high-resolution imagery. We take advantage of neural techniques to provide adequate stylization at the global level and use their output as a prior for subsequent patch-based synthesis at the detail level. Thanks to this combination, our method keeps the high frequencies of the original artistic media better, thereby dramatically increases the fidelity of the resulting stylized imagery. We also show how to stylize extremely large images (e.g., 340 Mpix) without the need to run the synthesis at the pixel level, yet retaining the original high-frequency details.\",\"PeriodicalId\":407491,\"journal\":{\"name\":\"Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/EXP.20191075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EXP.20191075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了一种新的基于示例的风格转移方法,该方法将神经方法与基于补丁的合成相结合,即使对于高分辨率图像,也能实现令人信服的风格化质量。我们利用神经技术在全局层面上提供足够的风格化,并将其输出作为随后在细节层面上基于补丁的合成的先决条件。由于这种组合,我们的方法更好地保持了原始艺术媒体的高频,从而大大提高了最终风格化图像的保真度。我们还展示了如何风格化非常大的图像(例如,340 Mpix),而不需要在像素级运行合成,但保留原来的高频细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing neural style transfer using patch-based synthesis
We present a new approach to example-based style transfer which combines neural methods with patch-based synthesis to achieve compelling stylization quality even for high-resolution imagery. We take advantage of neural techniques to provide adequate stylization at the global level and use their output as a prior for subsequent patch-based synthesis at the detail level. Thanks to this combination, our method keeps the high frequencies of the original artistic media better, thereby dramatically increases the fidelity of the resulting stylized imagery. We also show how to stylize extremely large images (e.g., 340 Mpix) without the need to run the synthesis at the pixel level, yet retaining the original high-frequency details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信