基于模糊知识库的快速推理神经网络

K. S. Kumar, M. Sparancia, A. Unnikrishnan
{"title":"基于模糊知识库的快速推理神经网络","authors":"K. S. Kumar, M. Sparancia, A. Unnikrishnan","doi":"10.1109/CMPSAC.1992.217577","DOIUrl":null,"url":null,"abstract":"The authors discuss a framework where fast inferences could be made from a fuzzy knowledge base of examples using neural networks. They sketch a scheme for defuzzifying the example base into a set of similarity vectors using a trait-adjusted similarity measure between a pair of fuzzy terms, and then training a neural network with these similarity vectors. A multilayer feedforward neural network with backpropagation learning rule was used.<<ETX>>","PeriodicalId":286518,"journal":{"name":"[1992] Proceedings. The Sixteenth Annual International Computer Software and Applications Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural network for fast inferencing on a fuzzy knowledge base\",\"authors\":\"K. S. Kumar, M. Sparancia, A. Unnikrishnan\",\"doi\":\"10.1109/CMPSAC.1992.217577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors discuss a framework where fast inferences could be made from a fuzzy knowledge base of examples using neural networks. They sketch a scheme for defuzzifying the example base into a set of similarity vectors using a trait-adjusted similarity measure between a pair of fuzzy terms, and then training a neural network with these similarity vectors. A multilayer feedforward neural network with backpropagation learning rule was used.<<ETX>>\",\"PeriodicalId\":286518,\"journal\":{\"name\":\"[1992] Proceedings. The Sixteenth Annual International Computer Software and Applications Conference\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings. The Sixteenth Annual International Computer Software and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMPSAC.1992.217577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings. The Sixteenth Annual International Computer Software and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPSAC.1992.217577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作者讨论了一个框架,该框架可以使用神经网络从模糊的示例知识库中进行快速推理。他们提出了一种方案,利用一对模糊项之间的特征调整相似性度量将示例库解模糊化为一组相似性向量,然后用这些相似性向量训练神经网络。采用带反向传播学习规则的多层前馈神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network for fast inferencing on a fuzzy knowledge base
The authors discuss a framework where fast inferences could be made from a fuzzy knowledge base of examples using neural networks. They sketch a scheme for defuzzifying the example base into a set of similarity vectors using a trait-adjusted similarity measure between a pair of fuzzy terms, and then training a neural network with these similarity vectors. A multilayer feedforward neural network with backpropagation learning rule was used.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信