电子表格中自适应表识别的遗传搜索

Elvis Koci, Maik Thiele, Oscar Romero, Wolfgang Lehner
{"title":"电子表格中自适应表识别的遗传搜索","authors":"Elvis Koci, Maik Thiele, Oscar Romero, Wolfgang Lehner","doi":"10.1109/ICDAR.2019.00206","DOIUrl":null,"url":null,"abstract":"Spreadsheets are very successful content generation tools, used in almost every enterprise to create a wealth of information. However, this information is often intermingled with various formatting, layout, and textual metadata, making it hard to identify and interpret the tabular payload. Previous works proposed to solve this problem by mainly using heuristics. Although fast to implement, these approaches fail to capture the high variability of user-generated spreadsheet tables. Therefore, in this paper, we propose a supervised approach that is able to adapt to arbitrary spreadsheet datasets. We use a graph model to represent the contents of a sheet, which carries layout and spatial features. Subsequently, we apply genetic-based approaches for graph partitioning, to recognize the parts of the graph corresponding to tables in the sheet. The search for tables is guided by an objective function, which is tuned to match the specific characteristics of a given dataset. We present the feasibility of this approach with an experimental evaluation, on a large, real-world spreadsheet corpus.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Genetic-Based Search for Adaptive Table Recognition in Spreadsheets\",\"authors\":\"Elvis Koci, Maik Thiele, Oscar Romero, Wolfgang Lehner\",\"doi\":\"10.1109/ICDAR.2019.00206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spreadsheets are very successful content generation tools, used in almost every enterprise to create a wealth of information. However, this information is often intermingled with various formatting, layout, and textual metadata, making it hard to identify and interpret the tabular payload. Previous works proposed to solve this problem by mainly using heuristics. Although fast to implement, these approaches fail to capture the high variability of user-generated spreadsheet tables. Therefore, in this paper, we propose a supervised approach that is able to adapt to arbitrary spreadsheet datasets. We use a graph model to represent the contents of a sheet, which carries layout and spatial features. Subsequently, we apply genetic-based approaches for graph partitioning, to recognize the parts of the graph corresponding to tables in the sheet. The search for tables is guided by an objective function, which is tuned to match the specific characteristics of a given dataset. We present the feasibility of this approach with an experimental evaluation, on a large, real-world spreadsheet corpus.\",\"PeriodicalId\":325437,\"journal\":{\"name\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2019.00206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

电子表格是非常成功的内容生成工具,几乎每个企业都使用它来创建丰富的信息。然而,这些信息经常与各种格式、布局和文本元数据混杂在一起,使得难以识别和解释表格有效负载。以往的研究主要是利用启发式方法来解决这个问题。尽管实现速度很快,但这些方法无法捕捉到用户生成的电子表格的高度可变性。因此,在本文中,我们提出了一种能够适应任意电子表格数据集的监督方法。我们使用图形模型来表示工作表的内容,其中包含布局和空间特征。随后,我们应用基于遗传的方法进行图划分,以识别与表中表对应的图的部分。表的搜索由一个目标函数指导,该目标函数被调优以匹配给定数据集的特定特征。我们提出了这种方法的可行性与实验评估,在一个大的,现实世界的电子表格语料库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Genetic-Based Search for Adaptive Table Recognition in Spreadsheets
Spreadsheets are very successful content generation tools, used in almost every enterprise to create a wealth of information. However, this information is often intermingled with various formatting, layout, and textual metadata, making it hard to identify and interpret the tabular payload. Previous works proposed to solve this problem by mainly using heuristics. Although fast to implement, these approaches fail to capture the high variability of user-generated spreadsheet tables. Therefore, in this paper, we propose a supervised approach that is able to adapt to arbitrary spreadsheet datasets. We use a graph model to represent the contents of a sheet, which carries layout and spatial features. Subsequently, we apply genetic-based approaches for graph partitioning, to recognize the parts of the graph corresponding to tables in the sheet. The search for tables is guided by an objective function, which is tuned to match the specific characteristics of a given dataset. We present the feasibility of this approach with an experimental evaluation, on a large, real-world spreadsheet corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信