从移动平台进行无监督运动学习

Victor A. Romero-Cano, Juan I. Nieto, Gabriel Agamennoni
{"title":"从移动平台进行无监督运动学习","authors":"Victor A. Romero-Cano, Juan I. Nieto, Gabriel Agamennoni","doi":"10.1109/IVWORKSHOPS.2013.6615234","DOIUrl":null,"url":null,"abstract":"Learning motion patterns in dynamic environments is a key component of any context-aware robotic system, and probabilistic mixture models provide a sound framework for mining these patterns. This paper presents an approach for learning motion models from trajectories provided by the tracking system of a moving platform. We present a learning approach in which a Linear Dynamical System (LDS) is augmented with a discrete hidden variable that has a number of states equal to the number of behaviours in the environment. As a result, a mixture of linear dynamical systems (MLDSs) capable of explaining several motion behaviours is developed. The model is learned by means of the Expectation Maximization (EM) algorithm.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unsupervised motion learning from a moving platform\",\"authors\":\"Victor A. Romero-Cano, Juan I. Nieto, Gabriel Agamennoni\",\"doi\":\"10.1109/IVWORKSHOPS.2013.6615234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning motion patterns in dynamic environments is a key component of any context-aware robotic system, and probabilistic mixture models provide a sound framework for mining these patterns. This paper presents an approach for learning motion models from trajectories provided by the tracking system of a moving platform. We present a learning approach in which a Linear Dynamical System (LDS) is augmented with a discrete hidden variable that has a number of states equal to the number of behaviours in the environment. As a result, a mixture of linear dynamical systems (MLDSs) capable of explaining several motion behaviours is developed. The model is learned by means of the Expectation Maximization (EM) algorithm.\",\"PeriodicalId\":251198,\"journal\":{\"name\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVWORKSHOPS.2013.6615234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVWORKSHOPS.2013.6615234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在动态环境中学习运动模式是任何上下文感知机器人系统的关键组成部分,概率混合模型为挖掘这些模式提供了良好的框架。本文提出了一种从运动平台跟踪系统提供的轨迹中学习运动模型的方法。我们提出了一种学习方法,其中线性动力系统(LDS)被一个离散的隐变量增强,该隐变量具有与环境中行为数量相等的状态数量。因此,能够解释几种运动行为的线性动力系统(mlds)的混合物被开发出来。该模型采用期望最大化(EM)算法进行学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised motion learning from a moving platform
Learning motion patterns in dynamic environments is a key component of any context-aware robotic system, and probabilistic mixture models provide a sound framework for mining these patterns. This paper presents an approach for learning motion models from trajectories provided by the tracking system of a moving platform. We present a learning approach in which a Linear Dynamical System (LDS) is augmented with a discrete hidden variable that has a number of states equal to the number of behaviours in the environment. As a result, a mixture of linear dynamical systems (MLDSs) capable of explaining several motion behaviours is developed. The model is learned by means of the Expectation Maximization (EM) algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信