Victor A. Romero-Cano, Juan I. Nieto, Gabriel Agamennoni
{"title":"从移动平台进行无监督运动学习","authors":"Victor A. Romero-Cano, Juan I. Nieto, Gabriel Agamennoni","doi":"10.1109/IVWORKSHOPS.2013.6615234","DOIUrl":null,"url":null,"abstract":"Learning motion patterns in dynamic environments is a key component of any context-aware robotic system, and probabilistic mixture models provide a sound framework for mining these patterns. This paper presents an approach for learning motion models from trajectories provided by the tracking system of a moving platform. We present a learning approach in which a Linear Dynamical System (LDS) is augmented with a discrete hidden variable that has a number of states equal to the number of behaviours in the environment. As a result, a mixture of linear dynamical systems (MLDSs) capable of explaining several motion behaviours is developed. The model is learned by means of the Expectation Maximization (EM) algorithm.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unsupervised motion learning from a moving platform\",\"authors\":\"Victor A. Romero-Cano, Juan I. Nieto, Gabriel Agamennoni\",\"doi\":\"10.1109/IVWORKSHOPS.2013.6615234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning motion patterns in dynamic environments is a key component of any context-aware robotic system, and probabilistic mixture models provide a sound framework for mining these patterns. This paper presents an approach for learning motion models from trajectories provided by the tracking system of a moving platform. We present a learning approach in which a Linear Dynamical System (LDS) is augmented with a discrete hidden variable that has a number of states equal to the number of behaviours in the environment. As a result, a mixture of linear dynamical systems (MLDSs) capable of explaining several motion behaviours is developed. The model is learned by means of the Expectation Maximization (EM) algorithm.\",\"PeriodicalId\":251198,\"journal\":{\"name\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVWORKSHOPS.2013.6615234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVWORKSHOPS.2013.6615234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised motion learning from a moving platform
Learning motion patterns in dynamic environments is a key component of any context-aware robotic system, and probabilistic mixture models provide a sound framework for mining these patterns. This paper presents an approach for learning motion models from trajectories provided by the tracking system of a moving platform. We present a learning approach in which a Linear Dynamical System (LDS) is augmented with a discrete hidden variable that has a number of states equal to the number of behaviours in the environment. As a result, a mixture of linear dynamical systems (MLDSs) capable of explaining several motion behaviours is developed. The model is learned by means of the Expectation Maximization (EM) algorithm.