基于密度的聚类和径向基函数建模来生成信用卡欺诈评分

V. Hanagandi, A. Dhar, K. Buescher
{"title":"基于密度的聚类和径向基函数建模来生成信用卡欺诈评分","authors":"V. Hanagandi, A. Dhar, K. Buescher","doi":"10.1109/CIFER.1996.501848","DOIUrl":null,"url":null,"abstract":"Historical information on credit card transactions can be used to generate a fraud score which can then be used to reduce credit card fraud. The report describes a fraud-nonfraud classification methodology using a radial basis function network (RBFN) with a density based clustering approach. The input data is transformed into the cardinal component space and clustering as well as RBFN modeling is done using a few cardinal components. The methodology has been tested on a fraud detection problem and the preliminary results obtained are satisfactory.","PeriodicalId":378565,"journal":{"name":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Density-based clustering and radial basis function modeling to generate credit card fraud scores\",\"authors\":\"V. Hanagandi, A. Dhar, K. Buescher\",\"doi\":\"10.1109/CIFER.1996.501848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Historical information on credit card transactions can be used to generate a fraud score which can then be used to reduce credit card fraud. The report describes a fraud-nonfraud classification methodology using a radial basis function network (RBFN) with a density based clustering approach. The input data is transformed into the cardinal component space and clustering as well as RBFN modeling is done using a few cardinal components. The methodology has been tested on a fraud detection problem and the preliminary results obtained are satisfactory.\",\"PeriodicalId\":378565,\"journal\":{\"name\":\"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIFER.1996.501848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFER.1996.501848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

信用卡交易的历史信息可用于生成欺诈评分,然后可用于减少信用卡欺诈。该报告描述了一种使用径向基函数网络(RBFN)和基于密度的聚类方法的欺诈-非欺诈分类方法。将输入数据转换为基数分量空间,并使用几个基数分量完成聚类和RBFN建模。该方法已在一个欺诈检测问题上进行了测试,初步结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density-based clustering and radial basis function modeling to generate credit card fraud scores
Historical information on credit card transactions can be used to generate a fraud score which can then be used to reduce credit card fraud. The report describes a fraud-nonfraud classification methodology using a radial basis function network (RBFN) with a density based clustering approach. The input data is transformed into the cardinal component space and clustering as well as RBFN modeling is done using a few cardinal components. The methodology has been tested on a fraud detection problem and the preliminary results obtained are satisfactory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信