张量的奇异值与特征值:变分方法

Lek-Heng Lim
{"title":"张量的奇异值与特征值:变分方法","authors":"Lek-Heng Lim","doi":"10.1109/CAMAP.2005.1574201","DOIUrl":null,"url":null,"abstract":"We propose a theory of eigenvalues, eigenvectors, singular values, and singular vectors for tensors based on a constrained variational approach much like the Rayleigh quotient for symmetric matrix eigenvalues. These notions are particularly useful in generalizing certain areas where the spectral theory of matrices has traditionally played an important role. For illustration, we will discuss a multilinear generalization of the Perron-Frobenius theorem","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"977","resultStr":"{\"title\":\"Singular values and eigenvalues of tensors: a variational approach\",\"authors\":\"Lek-Heng Lim\",\"doi\":\"10.1109/CAMAP.2005.1574201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a theory of eigenvalues, eigenvectors, singular values, and singular vectors for tensors based on a constrained variational approach much like the Rayleigh quotient for symmetric matrix eigenvalues. These notions are particularly useful in generalizing certain areas where the spectral theory of matrices has traditionally played an important role. For illustration, we will discuss a multilinear generalization of the Perron-Frobenius theorem\",\"PeriodicalId\":281761,\"journal\":{\"name\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"977\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAP.2005.1574201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 977

摘要

我们提出了一种基于约束变分方法的张量特征值、特征向量、奇异值和奇异向量的理论,就像对称矩阵特征值的瑞利商一样。这些概念在推广矩阵谱理论传统上扮演重要角色的某些领域时特别有用。为了说明,我们将讨论裴龙-弗罗本纽斯定理的多线性推广
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular values and eigenvalues of tensors: a variational approach
We propose a theory of eigenvalues, eigenvectors, singular values, and singular vectors for tensors based on a constrained variational approach much like the Rayleigh quotient for symmetric matrix eigenvalues. These notions are particularly useful in generalizing certain areas where the spectral theory of matrices has traditionally played an important role. For illustration, we will discuss a multilinear generalization of the Perron-Frobenius theorem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信