{"title":"平面PBG结构及其在天线中的应用","authors":"M. N. Mollah, N. Karmakar","doi":"10.1109/APS.2001.959769","DOIUrl":null,"url":null,"abstract":"Photonic band gap (PBG) materials are periodic structures which exhibit wide band pass and band rejection properties at microwave frequencies. PBG materials are formed by introducing periodic perturbation such as dielectric rods, holes and patterns in waveguides and PCB substrates. As photon propagation is impeded in a photonic crystal by electrons, so the electromagnetic waves in a PBG material are impeded due to the periodic discontinuity, hence making a slow wave structure. This paper reviews the applications of PBG materials in antenna design. Different PBG configurations and their working principles are described. The role of this novel material in enhancing printed antenna performance is highlighted. The applications include image rejection, gain improvement, suppression of surface wave, ripple suppression in radiation patterns and antenna bandwidth.","PeriodicalId":159827,"journal":{"name":"IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Planar PBG structures and their applications to antennas\",\"authors\":\"M. N. Mollah, N. Karmakar\",\"doi\":\"10.1109/APS.2001.959769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photonic band gap (PBG) materials are periodic structures which exhibit wide band pass and band rejection properties at microwave frequencies. PBG materials are formed by introducing periodic perturbation such as dielectric rods, holes and patterns in waveguides and PCB substrates. As photon propagation is impeded in a photonic crystal by electrons, so the electromagnetic waves in a PBG material are impeded due to the periodic discontinuity, hence making a slow wave structure. This paper reviews the applications of PBG materials in antenna design. Different PBG configurations and their working principles are described. The role of this novel material in enhancing printed antenna performance is highlighted. The applications include image rejection, gain improvement, suppression of surface wave, ripple suppression in radiation patterns and antenna bandwidth.\",\"PeriodicalId\":159827,\"journal\":{\"name\":\"IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2001.959769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2001.959769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Planar PBG structures and their applications to antennas
Photonic band gap (PBG) materials are periodic structures which exhibit wide band pass and band rejection properties at microwave frequencies. PBG materials are formed by introducing periodic perturbation such as dielectric rods, holes and patterns in waveguides and PCB substrates. As photon propagation is impeded in a photonic crystal by electrons, so the electromagnetic waves in a PBG material are impeded due to the periodic discontinuity, hence making a slow wave structure. This paper reviews the applications of PBG materials in antenna design. Different PBG configurations and their working principles are described. The role of this novel material in enhancing printed antenna performance is highlighted. The applications include image rejection, gain improvement, suppression of surface wave, ripple suppression in radiation patterns and antenna bandwidth.