低维几何转换的例子

Andrea Seppi
{"title":"低维几何转换的例子","authors":"Andrea Seppi","doi":"10.5802/tsg.368","DOIUrl":null,"url":null,"abstract":"The purpose of this note is to discuss examples of geometric transition from hyperbolic structures to half-pipe and Anti-de Sitter structures in dimensions two, three and four. As a warm-up, explicit examples of transition to Euclidean and spherical structures are presented. No new results appear here; nor an exhaustive treatment is aimed. On the other hand, details of some elementary computations are provided to explain certain techniques involved. This note, and in particular the last section, can also serve as an introduction to the ideas behind the four-dimensional construction of [RS19].","PeriodicalId":256700,"journal":{"name":"Séminaire de théorie spectrale et géométrie","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Examples of geometric transition in low dimensions\",\"authors\":\"Andrea Seppi\",\"doi\":\"10.5802/tsg.368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this note is to discuss examples of geometric transition from hyperbolic structures to half-pipe and Anti-de Sitter structures in dimensions two, three and four. As a warm-up, explicit examples of transition to Euclidean and spherical structures are presented. No new results appear here; nor an exhaustive treatment is aimed. On the other hand, details of some elementary computations are provided to explain certain techniques involved. This note, and in particular the last section, can also serve as an introduction to the ideas behind the four-dimensional construction of [RS19].\",\"PeriodicalId\":256700,\"journal\":{\"name\":\"Séminaire de théorie spectrale et géométrie\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Séminaire de théorie spectrale et géométrie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/tsg.368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Séminaire de théorie spectrale et géométrie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/tsg.368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本笔记的目的是讨论从双曲结构到半管结构和反德西特结构在二维、三维和四维的几何转换的例子。作为热身,给出了过渡到欧几里得结构和球面结构的具体例子。这里没有出现新的结果;本文的目的也不是详尽无遗。另一方面,提供了一些基本计算的细节来解释所涉及的某些技术。这篇笔记,特别是最后一节,也可以作为[RS19]四维结构背后思想的介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examples of geometric transition in low dimensions
The purpose of this note is to discuss examples of geometric transition from hyperbolic structures to half-pipe and Anti-de Sitter structures in dimensions two, three and four. As a warm-up, explicit examples of transition to Euclidean and spherical structures are presented. No new results appear here; nor an exhaustive treatment is aimed. On the other hand, details of some elementary computations are provided to explain certain techniques involved. This note, and in particular the last section, can also serve as an introduction to the ideas behind the four-dimensional construction of [RS19].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信