基于NLP技术的集成方法在Twitter情感分析中的性能分析

M. Kanakaraj, R. R. Guddeti
{"title":"基于NLP技术的集成方法在Twitter情感分析中的性能分析","authors":"M. Kanakaraj, R. R. Guddeti","doi":"10.1109/ICOSC.2015.7050801","DOIUrl":null,"url":null,"abstract":"Mining opinions and analyzing sentiments from social network data help in various fields such as even prediction, analyzing overall mood of public on a particular social issue and so on. This paper involves analyzing the mood of the society on a particular news from Twitter posts. The key idea of the paper is to increase the accuracy of classification by including Natural Language Processing Techniques (NLP) especially semantics and Word Sense Disambiguation. The mined text information is subjected to Ensemble classification to analyze the sentiment. Ensemble classification involves combining the effect of various independent classifiers on a particular classification problem. Experiments conducted demonstrate that ensemble classifier outperforms traditional machine learning classifiers by 3-5%.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"Performance analysis of Ensemble methods on Twitter sentiment analysis using NLP techniques\",\"authors\":\"M. Kanakaraj, R. R. Guddeti\",\"doi\":\"10.1109/ICOSC.2015.7050801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining opinions and analyzing sentiments from social network data help in various fields such as even prediction, analyzing overall mood of public on a particular social issue and so on. This paper involves analyzing the mood of the society on a particular news from Twitter posts. The key idea of the paper is to increase the accuracy of classification by including Natural Language Processing Techniques (NLP) especially semantics and Word Sense Disambiguation. The mined text information is subjected to Ensemble classification to analyze the sentiment. Ensemble classification involves combining the effect of various independent classifiers on a particular classification problem. Experiments conducted demonstrate that ensemble classifier outperforms traditional machine learning classifiers by 3-5%.\",\"PeriodicalId\":126701,\"journal\":{\"name\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2015.7050801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

摘要

从社交网络数据中挖掘意见和分析情绪有助于各个领域,例如甚至预测,分析公众对特定社会问题的整体情绪等等。这篇论文涉及到从Twitter帖子中分析社会对某一特定新闻的情绪。本文的核心思想是通过引入自然语言处理技术,特别是语义和词义消歧技术来提高分类的准确性。对挖掘的文本信息进行集成分类,进行情感分析。集成分类涉及将各种独立分类器对特定分类问题的影响结合起来。实验表明,集成分类器优于传统机器学习分类器3-5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of Ensemble methods on Twitter sentiment analysis using NLP techniques
Mining opinions and analyzing sentiments from social network data help in various fields such as even prediction, analyzing overall mood of public on a particular social issue and so on. This paper involves analyzing the mood of the society on a particular news from Twitter posts. The key idea of the paper is to increase the accuracy of classification by including Natural Language Processing Techniques (NLP) especially semantics and Word Sense Disambiguation. The mined text information is subjected to Ensemble classification to analyze the sentiment. Ensemble classification involves combining the effect of various independent classifiers on a particular classification problem. Experiments conducted demonstrate that ensemble classifier outperforms traditional machine learning classifiers by 3-5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信