基于颜色和纹理特征的改进Mean Shift跟踪算法

Xiang Zhang, Yuan-Ming Dai, Zhang-wei Chen, Huai-Xiang Zhang
{"title":"基于颜色和纹理特征的改进Mean Shift跟踪算法","authors":"Xiang Zhang, Yuan-Ming Dai, Zhang-wei Chen, Huai-Xiang Zhang","doi":"10.1109/ICWAPR.2010.5576453","DOIUrl":null,"url":null,"abstract":"This paper presents an improved Mean Shift tracking algorithm. It extends the classic Mean Shift tracking algorithm by combining color and texture features. In the proposed method, firstly, both the color feature and the texture feature of the target are extracted from first frame and the histogram of each feature is computed. Then the Mean Shift algorithm is run for maximizing the similarity measure of each feature independently. In last step, center of the target in the new frame is computed through the integration of the outputs of Mean Shift. Experiments show that the proposed Mean-Shift tracking algorithm combining color and texture features provides more reliable performance than single features tracking.","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An improved Mean Shift tracking algorithm based on color and texture feature\",\"authors\":\"Xiang Zhang, Yuan-Ming Dai, Zhang-wei Chen, Huai-Xiang Zhang\",\"doi\":\"10.1109/ICWAPR.2010.5576453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved Mean Shift tracking algorithm. It extends the classic Mean Shift tracking algorithm by combining color and texture features. In the proposed method, firstly, both the color feature and the texture feature of the target are extracted from first frame and the histogram of each feature is computed. Then the Mean Shift algorithm is run for maximizing the similarity measure of each feature independently. In last step, center of the target in the new frame is computed through the integration of the outputs of Mean Shift. Experiments show that the proposed Mean-Shift tracking algorithm combining color and texture features provides more reliable performance than single features tracking.\",\"PeriodicalId\":219884,\"journal\":{\"name\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2010.5576453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种改进的Mean Shift跟踪算法。它通过结合颜色和纹理特征扩展了经典的Mean Shift跟踪算法。该方法首先在第一帧提取目标的颜色特征和纹理特征,并计算各特征的直方图;然后运行Mean Shift算法独立地最大化每个特征的相似性度量。最后一步,通过对Mean Shift输出的积分计算新帧中目标的中心。实验表明,所提出的结合颜色和纹理特征的Mean-Shift跟踪算法比单一特征的跟踪性能更可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved Mean Shift tracking algorithm based on color and texture feature
This paper presents an improved Mean Shift tracking algorithm. It extends the classic Mean Shift tracking algorithm by combining color and texture features. In the proposed method, firstly, both the color feature and the texture feature of the target are extracted from first frame and the histogram of each feature is computed. Then the Mean Shift algorithm is run for maximizing the similarity measure of each feature independently. In last step, center of the target in the new frame is computed through the integration of the outputs of Mean Shift. Experiments show that the proposed Mean-Shift tracking algorithm combining color and texture features provides more reliable performance than single features tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信