为网络安全检测阿拉伯语欺骗性推文

F. M. R. Pardo, Paolo Rosso, A. Charfi, W. Zaghouani
{"title":"为网络安全检测阿拉伯语欺骗性推文","authors":"F. M. R. Pardo, Paolo Rosso, A. Charfi, W. Zaghouani","doi":"10.1109/ISI.2019.8823378","DOIUrl":null,"url":null,"abstract":"In the framework of the QNRF project on Arabic Author Profiling for Cyber-Security, we addressed deception detection in Arabic in order to discard those messages that do not really represent potential threats. We have applied the Low Dimensionality Statistical Embedding (LDSE) method to several corpora for Arabic including the Arabic credibility corpus and two new corpora that we created: the Qatar Twitter corpus and the Qatar News corpus. We achieved a performance of 0.797 Macro F-measure on the Arabic Credibility corpus. The obtained results with two well-known distributed representations, namely Continuous Bag of Words and Skip Grams, showed the competitiveness of our approach. The LDSE approach gave similar results on the two corpora that we created. We evaluated our work in a cross-genre scenario, showing the robustness of LDSE when there are enough data about similar topics.","PeriodicalId":156130,"journal":{"name":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Detecting Deceptive Tweets in Arabic for Cyber-Security\",\"authors\":\"F. M. R. Pardo, Paolo Rosso, A. Charfi, W. Zaghouani\",\"doi\":\"10.1109/ISI.2019.8823378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of the QNRF project on Arabic Author Profiling for Cyber-Security, we addressed deception detection in Arabic in order to discard those messages that do not really represent potential threats. We have applied the Low Dimensionality Statistical Embedding (LDSE) method to several corpora for Arabic including the Arabic credibility corpus and two new corpora that we created: the Qatar Twitter corpus and the Qatar News corpus. We achieved a performance of 0.797 Macro F-measure on the Arabic Credibility corpus. The obtained results with two well-known distributed representations, namely Continuous Bag of Words and Skip Grams, showed the competitiveness of our approach. The LDSE approach gave similar results on the two corpora that we created. We evaluated our work in a cross-genre scenario, showing the robustness of LDSE when there are enough data about similar topics.\",\"PeriodicalId\":156130,\"journal\":{\"name\":\"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2019.8823378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2019.8823378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在QNRF关于网络安全的阿拉伯作者分析项目的框架中,我们处理了阿拉伯语的欺骗检测,以便丢弃那些不真正代表潜在威胁的消息。我们将低维统计嵌入(LDSE)方法应用于几个阿拉伯语语料库,包括阿拉伯语可信度语料库和我们创建的两个新语料库:卡塔尔Twitter语料库和卡塔尔新闻语料库。我们在阿拉伯语可信度语料库上获得了0.797的宏观f测度。使用两个著名的分布式表示,即连续词袋和跳过Grams,得到的结果显示了我们的方法的竞争力。LDSE方法在我们创建的两个语料库上给出了类似的结果。我们在一个跨类型场景中评估了我们的工作,当有足够的关于类似主题的数据时,显示了LDSE的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Deceptive Tweets in Arabic for Cyber-Security
In the framework of the QNRF project on Arabic Author Profiling for Cyber-Security, we addressed deception detection in Arabic in order to discard those messages that do not really represent potential threats. We have applied the Low Dimensionality Statistical Embedding (LDSE) method to several corpora for Arabic including the Arabic credibility corpus and two new corpora that we created: the Qatar Twitter corpus and the Qatar News corpus. We achieved a performance of 0.797 Macro F-measure on the Arabic Credibility corpus. The obtained results with two well-known distributed representations, namely Continuous Bag of Words and Skip Grams, showed the competitiveness of our approach. The LDSE approach gave similar results on the two corpora that we created. We evaluated our work in a cross-genre scenario, showing the robustness of LDSE when there are enough data about similar topics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信