Ziang Wei, H. Fernandes, J. Tarpani, A. Osman, X. Maldague
{"title":"用于红外热成像图像增强的层叠去噪自编码器","authors":"Ziang Wei, H. Fernandes, J. Tarpani, A. Osman, X. Maldague","doi":"10.1109/INDIN45523.2021.9557407","DOIUrl":null,"url":null,"abstract":"Pulsed thermography is one of the most popular thermography inspection methods. During an experiment of pulsed thermography, a specimen is quickly heated, and infrared images are captured to provide information about the specimen’s surface and subsurface conditions. Adequate transformations are usually performed to enhance the contrast of the thermal images and to highlight the abnormal regions before these thermal images are visually inspected. Given that deep neural networks have been a success in computer vision in the past few years, a data contrast enhancement approach with stacked denoising autoencoder (DAE) is proposed in this paper to enhance the abnormal regions in the thermal frames gathered by pulsed thermography. Compared to the direct principal component thermography, the proposed method can enhance the abnormalities evidently without weakening important details.","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stacked denoising autoencoder for infrared thermography image enhancement\",\"authors\":\"Ziang Wei, H. Fernandes, J. Tarpani, A. Osman, X. Maldague\",\"doi\":\"10.1109/INDIN45523.2021.9557407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulsed thermography is one of the most popular thermography inspection methods. During an experiment of pulsed thermography, a specimen is quickly heated, and infrared images are captured to provide information about the specimen’s surface and subsurface conditions. Adequate transformations are usually performed to enhance the contrast of the thermal images and to highlight the abnormal regions before these thermal images are visually inspected. Given that deep neural networks have been a success in computer vision in the past few years, a data contrast enhancement approach with stacked denoising autoencoder (DAE) is proposed in this paper to enhance the abnormal regions in the thermal frames gathered by pulsed thermography. Compared to the direct principal component thermography, the proposed method can enhance the abnormalities evidently without weakening important details.\",\"PeriodicalId\":370921,\"journal\":{\"name\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45523.2021.9557407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stacked denoising autoencoder for infrared thermography image enhancement
Pulsed thermography is one of the most popular thermography inspection methods. During an experiment of pulsed thermography, a specimen is quickly heated, and infrared images are captured to provide information about the specimen’s surface and subsurface conditions. Adequate transformations are usually performed to enhance the contrast of the thermal images and to highlight the abnormal regions before these thermal images are visually inspected. Given that deep neural networks have been a success in computer vision in the past few years, a data contrast enhancement approach with stacked denoising autoencoder (DAE) is proposed in this paper to enhance the abnormal regions in the thermal frames gathered by pulsed thermography. Compared to the direct principal component thermography, the proposed method can enhance the abnormalities evidently without weakening important details.