{"title":"新型三自由度平移并联机构的设计与应用","authors":"Yangmin Li, Qingsong Xu","doi":"10.1109/ARSO.2007.4531432","DOIUrl":null,"url":null,"abstract":"A new three degrees of freedom (3-DOF) translational parallel manipulator (TPM) constructed only with prismatic (P), cylindrical (C), revolute (R) joints has been proposed in this paper. The mobility of the 3-PCR TPM is analyzed via screw theory. Afterwards, the inverse kinematics, forward kinematics, and velocity analysis are performed and the singularity problems are investigated. In addition, the reachable workspace has been determined analytically and compared with and without consideration of mechanical constraints. It is shown that the 3-PCR TPM owns a smaller size output platform than the existing 3-PRC one, and then has more wide applications. In view of applications, the 3-PCR TPM is adopted as a CPR (cardiopulmonary resuscitation) medical robot, and another new 3-PCR TPM with an orthogonal architecture is presented and its application in micro/nano scale manipulation has been exhibited through the employment into an automatic biological cell injection system. The results presented in the paper are helpful for the design and development of several new TPMs for various applications.","PeriodicalId":344670,"journal":{"name":"2007 IEEE Workshop on Advanced Robotics and Its Social Impacts","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Design and application of a new 3-DOF translational parallel manipulator\",\"authors\":\"Yangmin Li, Qingsong Xu\",\"doi\":\"10.1109/ARSO.2007.4531432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new three degrees of freedom (3-DOF) translational parallel manipulator (TPM) constructed only with prismatic (P), cylindrical (C), revolute (R) joints has been proposed in this paper. The mobility of the 3-PCR TPM is analyzed via screw theory. Afterwards, the inverse kinematics, forward kinematics, and velocity analysis are performed and the singularity problems are investigated. In addition, the reachable workspace has been determined analytically and compared with and without consideration of mechanical constraints. It is shown that the 3-PCR TPM owns a smaller size output platform than the existing 3-PRC one, and then has more wide applications. In view of applications, the 3-PCR TPM is adopted as a CPR (cardiopulmonary resuscitation) medical robot, and another new 3-PCR TPM with an orthogonal architecture is presented and its application in micro/nano scale manipulation has been exhibited through the employment into an automatic biological cell injection system. The results presented in the paper are helpful for the design and development of several new TPMs for various applications.\",\"PeriodicalId\":344670,\"journal\":{\"name\":\"2007 IEEE Workshop on Advanced Robotics and Its Social Impacts\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Advanced Robotics and Its Social Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARSO.2007.4531432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Advanced Robotics and Its Social Impacts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO.2007.4531432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and application of a new 3-DOF translational parallel manipulator
A new three degrees of freedom (3-DOF) translational parallel manipulator (TPM) constructed only with prismatic (P), cylindrical (C), revolute (R) joints has been proposed in this paper. The mobility of the 3-PCR TPM is analyzed via screw theory. Afterwards, the inverse kinematics, forward kinematics, and velocity analysis are performed and the singularity problems are investigated. In addition, the reachable workspace has been determined analytically and compared with and without consideration of mechanical constraints. It is shown that the 3-PCR TPM owns a smaller size output platform than the existing 3-PRC one, and then has more wide applications. In view of applications, the 3-PCR TPM is adopted as a CPR (cardiopulmonary resuscitation) medical robot, and another new 3-PCR TPM with an orthogonal architecture is presented and its application in micro/nano scale manipulation has been exhibited through the employment into an automatic biological cell injection system. The results presented in the paper are helpful for the design and development of several new TPMs for various applications.