AdaBoost性能改进使用粒子群算法

Mostafa Mohammadpour, M. Ghorbanian, S. Mozaffari
{"title":"AdaBoost性能改进使用粒子群算法","authors":"Mostafa Mohammadpour, M. Ghorbanian, S. Mozaffari","doi":"10.1109/IKT.2016.7777785","DOIUrl":null,"url":null,"abstract":"An improved AdaBoost algorithm based on optimizing search in sample space is presented. Working with data in large scale need more time to compare samples for finding a threshold in the AdaBoost algorithm when using decision stump as a weak classifier. We used PSO algorithm to evolve and select best feature in sample space for a weak classifier to reduce time. The experiment results show that with applying PSO to the decision stump, time consuming of the AdaBoost algorithm has been improved than base Adaboost. As a result, using evolutionary algorithms in such problems which have large scale, can reduce searching time for finding best solution and increase performance of algorithms in hand.","PeriodicalId":205496,"journal":{"name":"2016 Eighth International Conference on Information and Knowledge Technology (IKT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"AdaBoost performance improvement using PSO algorithm\",\"authors\":\"Mostafa Mohammadpour, M. Ghorbanian, S. Mozaffari\",\"doi\":\"10.1109/IKT.2016.7777785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved AdaBoost algorithm based on optimizing search in sample space is presented. Working with data in large scale need more time to compare samples for finding a threshold in the AdaBoost algorithm when using decision stump as a weak classifier. We used PSO algorithm to evolve and select best feature in sample space for a weak classifier to reduce time. The experiment results show that with applying PSO to the decision stump, time consuming of the AdaBoost algorithm has been improved than base Adaboost. As a result, using evolutionary algorithms in such problems which have large scale, can reduce searching time for finding best solution and increase performance of algorithms in hand.\",\"PeriodicalId\":205496,\"journal\":{\"name\":\"2016 Eighth International Conference on Information and Knowledge Technology (IKT)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Information and Knowledge Technology (IKT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IKT.2016.7777785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT.2016.7777785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于样本空间优化搜索的改进AdaBoost算法。在AdaBoost算法中,当使用decision stump作为弱分类器时,在处理大规模数据时需要花费更多的时间来比较样本以寻找阈值。我们使用粒子群算法在样本空间中进化和选择弱分类器的最佳特征,以减少时间。实验结果表明,将粒子群算法应用于决策残桩后,AdaBoost算法的耗时比base AdaBoost算法有所改善。因此,在这类大规模问题中使用进化算法,可以减少寻找最优解的搜索时间,提高现有算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AdaBoost performance improvement using PSO algorithm
An improved AdaBoost algorithm based on optimizing search in sample space is presented. Working with data in large scale need more time to compare samples for finding a threshold in the AdaBoost algorithm when using decision stump as a weak classifier. We used PSO algorithm to evolve and select best feature in sample space for a weak classifier to reduce time. The experiment results show that with applying PSO to the decision stump, time consuming of the AdaBoost algorithm has been improved than base Adaboost. As a result, using evolutionary algorithms in such problems which have large scale, can reduce searching time for finding best solution and increase performance of algorithms in hand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信