利用潜在回归模型进行风电功率预测

Benamar Bouyeddou, F. Harrou, A. Saidi, Ying Sun
{"title":"利用潜在回归模型进行风电功率预测","authors":"Benamar Bouyeddou, F. Harrou, A. Saidi, Ying Sun","doi":"10.1109/ICISS53185.2021.9533242","DOIUrl":null,"url":null,"abstract":"Wind power is considered one of the most promising renewable energies. Efficient prediction of wind power will support in efficiently integrating wind power in the power grid. However, the major challenge in wind power is its high fluctuation and intermittent nature, making it challenging to predict. This paper investigated and compared the performance of two commonly latent variable regression methods, namely principal component regression (PCR) and partial least squares regression (PLSR), for predicting wind power. Actual measurements recorded every 10 minutes from an actual wind turbine are used to demonstrate the prediction precision of the investigated techniques. The result showed that the prediction performances of PCR and PLSR are relatively comparable. The investigated models in this study can represent a helpful tool for model-based anomaly detection in wind turbines.","PeriodicalId":220371,"journal":{"name":"2021 International Conference on ICT for Smart Society (ICISS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Effective Wind Power Prediction using Latent Regression Models\",\"authors\":\"Benamar Bouyeddou, F. Harrou, A. Saidi, Ying Sun\",\"doi\":\"10.1109/ICISS53185.2021.9533242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind power is considered one of the most promising renewable energies. Efficient prediction of wind power will support in efficiently integrating wind power in the power grid. However, the major challenge in wind power is its high fluctuation and intermittent nature, making it challenging to predict. This paper investigated and compared the performance of two commonly latent variable regression methods, namely principal component regression (PCR) and partial least squares regression (PLSR), for predicting wind power. Actual measurements recorded every 10 minutes from an actual wind turbine are used to demonstrate the prediction precision of the investigated techniques. The result showed that the prediction performances of PCR and PLSR are relatively comparable. The investigated models in this study can represent a helpful tool for model-based anomaly detection in wind turbines.\",\"PeriodicalId\":220371,\"journal\":{\"name\":\"2021 International Conference on ICT for Smart Society (ICISS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on ICT for Smart Society (ICISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISS53185.2021.9533242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on ICT for Smart Society (ICISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISS53185.2021.9533242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

风能被认为是最有前途的可再生能源之一。有效的风电预测将为风电有效接入电网提供支持。然而,风力发电的主要挑战是其高波动性和间歇性,使其难以预测。本文研究并比较了两种常用的潜变量回归方法,即主成分回归(PCR)和偏最小二乘回归(PLSR)在风电预测中的性能。每10分钟从一台实际的风力涡轮机上记录的实际测量数据被用来证明所研究技术的预测精度。结果表明,PCR和PLSR的预测性能具有一定的可比性。本文研究的模型为风电机组基于模型的异常检测提供了一种有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Effective Wind Power Prediction using Latent Regression Models
Wind power is considered one of the most promising renewable energies. Efficient prediction of wind power will support in efficiently integrating wind power in the power grid. However, the major challenge in wind power is its high fluctuation and intermittent nature, making it challenging to predict. This paper investigated and compared the performance of two commonly latent variable regression methods, namely principal component regression (PCR) and partial least squares regression (PLSR), for predicting wind power. Actual measurements recorded every 10 minutes from an actual wind turbine are used to demonstrate the prediction precision of the investigated techniques. The result showed that the prediction performances of PCR and PLSR are relatively comparable. The investigated models in this study can represent a helpful tool for model-based anomaly detection in wind turbines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信