闭环上的一位σ - δ调制

S. Krause-Solberg, Olga Graf, F. Krahmer
{"title":"闭环上的一位σ - δ调制","authors":"S. Krause-Solberg, Olga Graf, F. Krahmer","doi":"10.1109/SSP.2018.8450721","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a scheme for the first order one-bit ΣΔ modulation on a closed loop. In contrast to schemes designed for the real line, which rely entirely on a recurrence relation, the difficulty of this setting is to avoid mismatches at the initialization point. In order to distribute the error equally around the loop, we propose an update of the samples using information we gain from the classical approach. We prove that the proposed scheme leads to a smaller reconstruction error and we discuss how this scheme can be extended to higher orders.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"74 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"One-Bit Sigma-Delta Modulation on a Closed Loop\",\"authors\":\"S. Krause-Solberg, Olga Graf, F. Krahmer\",\"doi\":\"10.1109/SSP.2018.8450721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a scheme for the first order one-bit ΣΔ modulation on a closed loop. In contrast to schemes designed for the real line, which rely entirely on a recurrence relation, the difficulty of this setting is to avoid mismatches at the initialization point. In order to distribute the error equally around the loop, we propose an update of the samples using information we gain from the classical approach. We prove that the proposed scheme leads to a smaller reconstruction error and we discuss how this scheme can be extended to higher orders.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"74 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种一阶1位ΣΔ闭环调制方案。与为实线设计的完全依赖于递归关系的方案相比,这种设置的难点在于避免初始化点的不匹配。为了使误差均匀分布在环路上,我们提出使用从经典方法中获得的信息来更新样本。我们证明了该方案具有较小的重构误差,并讨论了如何将该方案推广到更高阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Bit Sigma-Delta Modulation on a Closed Loop
In this paper, we propose a scheme for the first order one-bit ΣΔ modulation on a closed loop. In contrast to schemes designed for the real line, which rely entirely on a recurrence relation, the difficulty of this setting is to avoid mismatches at the initialization point. In order to distribute the error equally around the loop, we propose an update of the samples using information we gain from the classical approach. We prove that the proposed scheme leads to a smaller reconstruction error and we discuss how this scheme can be extended to higher orders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信