V. Krozer, M. Ruppert, M. Schussler, K. Fricke, W. Lee, H. Hartnagel
{"title":"基于一种新的物理HBT模型计算HBT放大器的功率能力","authors":"V. Krozer, M. Ruppert, M. Schussler, K. Fricke, W. Lee, H. Hartnagel","doi":"10.1109/INMMC.1994.512526","DOIUrl":null,"url":null,"abstract":"A novel model for the simulation of the microwave power capabilities of HBTs is presented. The model is based on physical analytical of the terminal currents as functions of the base-emitter and base-collector voltages. It takes into account the unequal thermal distribution of temperature for multi-finger HBT devices, the impact ionization, tunnelling, recombination currents etc. From the simulation of multi-finger transistor structures it can be concluded that high thermal device resistances are detrimental for power performance, because of the unequal distribution of temperature and hence base current in the HBT structure. It can also be concluded that the input and output reflection coefficients are insensitive to temperature variation. Finally, it has been shown theoretically and experimentally that the breakdown voltage increases slightly with increasing operating temperature.","PeriodicalId":164713,"journal":{"name":"Third International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Calculation of the power capabilities of HBT amplifiers based an a new physical HBT model\",\"authors\":\"V. Krozer, M. Ruppert, M. Schussler, K. Fricke, W. Lee, H. Hartnagel\",\"doi\":\"10.1109/INMMC.1994.512526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel model for the simulation of the microwave power capabilities of HBTs is presented. The model is based on physical analytical of the terminal currents as functions of the base-emitter and base-collector voltages. It takes into account the unequal thermal distribution of temperature for multi-finger HBT devices, the impact ionization, tunnelling, recombination currents etc. From the simulation of multi-finger transistor structures it can be concluded that high thermal device resistances are detrimental for power performance, because of the unequal distribution of temperature and hence base current in the HBT structure. It can also be concluded that the input and output reflection coefficients are insensitive to temperature variation. Finally, it has been shown theoretically and experimentally that the breakdown voltage increases slightly with increasing operating temperature.\",\"PeriodicalId\":164713,\"journal\":{\"name\":\"Third International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INMMC.1994.512526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMMC.1994.512526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calculation of the power capabilities of HBT amplifiers based an a new physical HBT model
A novel model for the simulation of the microwave power capabilities of HBTs is presented. The model is based on physical analytical of the terminal currents as functions of the base-emitter and base-collector voltages. It takes into account the unequal thermal distribution of temperature for multi-finger HBT devices, the impact ionization, tunnelling, recombination currents etc. From the simulation of multi-finger transistor structures it can be concluded that high thermal device resistances are detrimental for power performance, because of the unequal distribution of temperature and hence base current in the HBT structure. It can also be concluded that the input and output reflection coefficients are insensitive to temperature variation. Finally, it has been shown theoretically and experimentally that the breakdown voltage increases slightly with increasing operating temperature.