弥合审美鸿沟:网络图像的野性之美

Miriam Redi, Frank Z. Liu, Neil O'Hare
{"title":"弥合审美鸿沟:网络图像的野性之美","authors":"Miriam Redi, Frank Z. Liu, Neil O'Hare","doi":"10.1145/3078971.3078972","DOIUrl":null,"url":null,"abstract":"To provide good results, image search engines need to rank not just the most relevant images, but also the highest quality images. To surface beautiful pictures, existing computational aesthetic models are trained with datasets from photo contest websites, dominated by professional photos. Such models fail completely in real web scenarios, where images are extremely diverse in terms of quality and type (e.g. drawings, clip-art, etc). This work aims at bridging and understanding this \"aesthetic gap\". We collect a dataset of around 100K web images with `quality' and `type' (photo vs non-photo) annotations. We design a set of visual features to describe image pictorial characteristics, and deeply analyse the peculiar beauty of web images as opposed to appealing professional images. Finally, we build a set of computational aesthetic frameworks based on deep learning and hand-crafted features that take into account the diverse quality of web images, and show that they significantly outperform traditional computational aesthetics methods on our dataset.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bridging the Aesthetic Gap: The Wild Beauty of Web Imagery\",\"authors\":\"Miriam Redi, Frank Z. Liu, Neil O'Hare\",\"doi\":\"10.1145/3078971.3078972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To provide good results, image search engines need to rank not just the most relevant images, but also the highest quality images. To surface beautiful pictures, existing computational aesthetic models are trained with datasets from photo contest websites, dominated by professional photos. Such models fail completely in real web scenarios, where images are extremely diverse in terms of quality and type (e.g. drawings, clip-art, etc). This work aims at bridging and understanding this \\\"aesthetic gap\\\". We collect a dataset of around 100K web images with `quality' and `type' (photo vs non-photo) annotations. We design a set of visual features to describe image pictorial characteristics, and deeply analyse the peculiar beauty of web images as opposed to appealing professional images. Finally, we build a set of computational aesthetic frameworks based on deep learning and hand-crafted features that take into account the diverse quality of web images, and show that they significantly outperform traditional computational aesthetics methods on our dataset.\",\"PeriodicalId\":403556,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078971.3078972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3078972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为了提供好的结果,图像搜索引擎不仅需要对最相关的图像进行排名,还需要对质量最高的图像进行排名。为了呈现美丽的图片,现有的计算美学模型是用来自摄影比赛网站的数据集来训练的,这些数据集以专业照片为主。这样的模型在真实的web场景中完全失败,因为在真实的web场景中,图像在质量和类型上都是非常多样化的(例如,绘图、剪贴画等)。本作品旨在弥合和理解这种“审美鸿沟”。我们收集了大约10万张带有“质量”和“类型”(照片与非照片)注释的网络图像数据集。我们设计了一套视觉特征来描述图像的图像特征,并深入分析了网络图像相对于吸引人的专业图像的独特之美。最后,我们建立了一套基于深度学习和手工特征的计算美学框架,考虑到web图像的不同质量,并表明它们在我们的数据集上显著优于传统的计算美学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging the Aesthetic Gap: The Wild Beauty of Web Imagery
To provide good results, image search engines need to rank not just the most relevant images, but also the highest quality images. To surface beautiful pictures, existing computational aesthetic models are trained with datasets from photo contest websites, dominated by professional photos. Such models fail completely in real web scenarios, where images are extremely diverse in terms of quality and type (e.g. drawings, clip-art, etc). This work aims at bridging and understanding this "aesthetic gap". We collect a dataset of around 100K web images with `quality' and `type' (photo vs non-photo) annotations. We design a set of visual features to describe image pictorial characteristics, and deeply analyse the peculiar beauty of web images as opposed to appealing professional images. Finally, we build a set of computational aesthetic frameworks based on deep learning and hand-crafted features that take into account the diverse quality of web images, and show that they significantly outperform traditional computational aesthetics methods on our dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信