使用全基因组比较的全球流感病毒网络中的混合模式

A. Breland, M. H. Gunes, K. Schlauch, F. Harris
{"title":"使用全基因组比较的全球流感病毒网络中的混合模式","authors":"A. Breland, M. H. Gunes, K. Schlauch, F. Harris","doi":"10.1109/CIBCB.2010.5510336","DOIUrl":null,"url":null,"abstract":"Approximating ‘real’ disease transmission networks through genomic sequence comparisons among pathogenic isolates is increasingly feasible with the current growth in genomic sequence data. Here, we derive a network from over 4,200 globally distributed influenza A virus isolates based on alignment-free sequence comparisons. We then employ network mixing pattern analysis to examine transmission probabilities between isolates from different global regions, host types, subtypes and collection years. While we can not use our results to describe the complete global network of influenza A virus, we present a novel analytical process. In addition, we describe some of the characteristics of this subset of currently available data. Most notable results are the high levels of inter regional links and the important role that avian species seem to play in non human global transmission.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mixing patterns in a global influenza a virus network using whole genome comparisons\",\"authors\":\"A. Breland, M. H. Gunes, K. Schlauch, F. Harris\",\"doi\":\"10.1109/CIBCB.2010.5510336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximating ‘real’ disease transmission networks through genomic sequence comparisons among pathogenic isolates is increasingly feasible with the current growth in genomic sequence data. Here, we derive a network from over 4,200 globally distributed influenza A virus isolates based on alignment-free sequence comparisons. We then employ network mixing pattern analysis to examine transmission probabilities between isolates from different global regions, host types, subtypes and collection years. While we can not use our results to describe the complete global network of influenza A virus, we present a novel analytical process. In addition, we describe some of the characteristics of this subset of currently available data. Most notable results are the high levels of inter regional links and the important role that avian species seem to play in non human global transmission.\",\"PeriodicalId\":340637,\"journal\":{\"name\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2010.5510336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着目前基因组序列数据的增长,通过致病分离株之间的基因组序列比较来近似“真实”疾病传播网络越来越可行。在这里,我们基于无比对序列比较,从全球分布的4200多个甲型流感病毒分离株中得出一个网络。然后,我们使用网络混合模式分析来检查来自不同全球地区、宿主类型、亚型和收集年份的分离株之间的传播概率。虽然我们不能用我们的结果来描述完整的全球网络甲型流感病毒,我们提出了一个新的分析过程。此外,我们还描述了当前可用数据子集的一些特征。最显著的结果是高水平的区域间联系以及鸟类在非人类全球传播中似乎发挥的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixing patterns in a global influenza a virus network using whole genome comparisons
Approximating ‘real’ disease transmission networks through genomic sequence comparisons among pathogenic isolates is increasingly feasible with the current growth in genomic sequence data. Here, we derive a network from over 4,200 globally distributed influenza A virus isolates based on alignment-free sequence comparisons. We then employ network mixing pattern analysis to examine transmission probabilities between isolates from different global regions, host types, subtypes and collection years. While we can not use our results to describe the complete global network of influenza A virus, we present a novel analytical process. In addition, we describe some of the characteristics of this subset of currently available data. Most notable results are the high levels of inter regional links and the important role that avian species seem to play in non human global transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信