动态树状图视频分析

S. W. Ha, J. H. Kim
{"title":"动态树状图视频分析","authors":"S. W. Ha, J. H. Kim","doi":"10.1109/ICIT.2014.6895006","DOIUrl":null,"url":null,"abstract":"We introduce the DTM (dynamic genetic tree-map), a self-organizing neural network capable of structuring the optimal features in the data destined for recognition. The DTM uses a genetic algorithm to determine the degree of importance of features that have not been considered in the existing neural network. And we apply the GTM (genetic tree-map) that includes tree structure according to the precedence of the features. We suggest that the neurons inside the neural network are dynamically separated and incorporated based on the extended method of the DTM.","PeriodicalId":240337,"journal":{"name":"2014 IEEE International Conference on Industrial Technology (ICIT)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic tree map for video analysis\",\"authors\":\"S. W. Ha, J. H. Kim\",\"doi\":\"10.1109/ICIT.2014.6895006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the DTM (dynamic genetic tree-map), a self-organizing neural network capable of structuring the optimal features in the data destined for recognition. The DTM uses a genetic algorithm to determine the degree of importance of features that have not been considered in the existing neural network. And we apply the GTM (genetic tree-map) that includes tree structure according to the precedence of the features. We suggest that the neurons inside the neural network are dynamically separated and incorporated based on the extended method of the DTM.\",\"PeriodicalId\":240337,\"journal\":{\"name\":\"2014 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2014.6895006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.6895006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入DTM(动态遗传树图),一种自组织神经网络,能够构建用于识别的数据中的最优特征。DTM使用遗传算法来确定现有神经网络中未考虑的特征的重要程度。根据特征的优先级,采用包含树形结构的遗传树图(GTM)。我们建议基于DTM的扩展方法,对神经网络内部的神经元进行动态分离和合并。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic tree map for video analysis
We introduce the DTM (dynamic genetic tree-map), a self-organizing neural network capable of structuring the optimal features in the data destined for recognition. The DTM uses a genetic algorithm to determine the degree of importance of features that have not been considered in the existing neural network. And we apply the GTM (genetic tree-map) that includes tree structure according to the precedence of the features. We suggest that the neurons inside the neural network are dynamically separated and incorporated based on the extended method of the DTM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信